Abstract:Current research on video hallucination mitigation primarily focuses on isolated error types, leaving compositional hallucinations, arising from incorrect reasoning over multiple interacting spatial and temporal factors largely underexplored. We introduce OmniVCHall, a benchmark designed to systematically evaluate both isolated and compositional hallucinations in video multimodal large language models (VLLMs). OmniVCHall spans diverse video domains, introduces a novel camera-based hallucination type, and defines a fine-grained taxonomy, together with adversarial answer options (e.g., "All are correct" and "None of the above") to prevent shortcut reasoning. The evaluations of 39 representative VLLMs reveal that even advanced models (e.g., Qwen3-VL and GPT-5) exhibit substantial performance degradation. We propose TriCD, a contrastive decoding framework with a triple-pathway calibration mechanism. An adaptive perturbation controller dynamically selects distracting operations to construct negative video variants, while a saliency-guided enhancement module adaptively reinforces grounded token-wise visual evidences. These components are optimized via reinforcement learning to encourage precise decision-making under compositional hallucination settings. Experimental results show that TriCD consistently improves performance across two representative backbones, achieving an average accuracy improvement of over 10%. The data and code can be find at https://github.com/BMRETURN/OmniVCHall.
Abstract:Lossless compression has made significant advancements in Genomics Data (GD) storage, sharing and management. Current learning-based methods are non-evolvable with problems of low-level compression modeling, limited adaptability, and user-unfriendly interface. To this end, we propose AgentGC, the first evolutionary Agent-based GD Compressor, consisting of 3 layers with multi-agent named Leader and Worker. Specifically, the 1) User layer provides a user-friendly interface via Leader combined with LLM; 2) Cognitive layer, driven by the Leader, integrates LLM to consider joint optimization of algorithm-dataset-system, addressing the issues of low-level modeling and limited adaptability; and 3) Compression layer, headed by Worker, performs compression & decompression via a automated multi-knowledge learning-based compression framework. On top of AgentGC, we design 3 modes to support diverse scenarios: CP for compression-ratio priority, TP for throughput priority, and BM for balanced mode. Compared with 14 baselines on 9 datasets, the average compression ratios gains are 16.66%, 16.11%, and 16.33%, the throughput gains are 4.73x, 9.23x, and 9.15x, respectively.