School of Computer Science, Shenyang Aerospace University
Abstract:Despite the fast progress of explanation techniques in modern Deep Neural Networks (DNNs) where the main focus is handling "how to generate the explanations", advanced research questions that examine the quality of the explanation itself (e.g., "whether the explanations are accurate") and improve the explanation quality (e.g., "how to adjust the model to generate more accurate explanations when explanations are inaccurate") are still relatively under-explored. To guide the model toward better explanations, techniques in explanation supervision - which add supervision signals on the model explanation - have started to show promising effects on improving both the generalizability as and intrinsic interpretability of Deep Neural Networks. However, the research on supervising explanations, especially in vision-based applications represented through saliency maps, is in its early stage due to several inherent challenges: 1) inaccuracy of the human explanation annotation boundary, 2) incompleteness of the human explanation annotation region, and 3) inconsistency of the data distribution between human annotation and model explanation maps. To address the challenges, we propose a generic RES framework for guiding visual explanation by developing a novel objective that handles inaccurate boundary, incomplete region, and inconsistent distribution of human annotations, with a theoretical justification on model generalizability. Extensive experiments on two real-world image datasets demonstrate the effectiveness of the proposed framework on enhancing both the reasonability of the explanation and the performance of the backbone DNNs model.
Abstract:Graph diffusion problems such as the propagation of rumors, computer viruses, or smart grid failures are ubiquitous and societal. Hence it is usually crucial to identify diffusion sources according to the current graph diffusion observations. Despite its tremendous necessity and significance in practice, source localization, as the inverse problem of graph diffusion, is extremely challenging as it is ill-posed: different sources may lead to the same graph diffusion patterns. Different from most traditional source localization methods, this paper focuses on a probabilistic manner to account for the uncertainty of different candidate sources. Such endeavors require overcoming challenges including 1) the uncertainty in graph diffusion source localization is hard to be quantified; 2) the complex patterns of the graph diffusion sources are difficult to be probabilistically characterized; 3) the generalization under any underlying diffusion patterns is hard to be imposed. To solve the above challenges, this paper presents a generic framework: Source Localization Variational AutoEncoder (SL-VAE) for locating the diffusion sources under arbitrary diffusion patterns. Particularly, we propose a probabilistic model that leverages the forward diffusion estimation model along with deep generative models to approximate the diffusion source distribution for quantifying the uncertainty. SL-VAE further utilizes prior knowledge of the source-observation pairs to characterize the complex patterns of diffusion sources by a learned generative prior. Lastly, a unified objective that integrates the forward diffusion estimation model is derived to enforce the model to generalize under arbitrary diffusion patterns. Extensive experiments are conducted on 7 real-world datasets to demonstrate the superiority of SL-VAE in reconstructing the diffusion sources by excelling other methods on average 20% in AUC score.
Abstract:Localizing the source of graph diffusion phenomena, such as misinformation propagation, is an important yet extremely challenging task. Existing source localization models typically are heavily dependent on the hand-crafted rules. Unfortunately, a large portion of the graph diffusion process for many applications is still unknown to human beings so it is important to have expressive models for learning such underlying rules automatically. This paper aims to establish a generic framework of invertible graph diffusion models for source localization on graphs, namely Invertible Validity-aware Graph Diffusion (IVGD), to handle major challenges including 1) Difficulty to leverage knowledge in graph diffusion models for modeling their inverse processes in an end-to-end fashion, 2) Difficulty to ensure the validity of the inferred sources, and 3) Efficiency and scalability in source inference. Specifically, first, to inversely infer sources of graph diffusion, we propose a graph residual scenario to make existing graph diffusion models invertible with theoretical guarantees; second, we develop a novel error compensation mechanism that learns to offset the errors of the inferred sources. Finally, to ensure the validity of the inferred sources, a new set of validity-aware layers have been devised to project inferred sources to feasible regions by flexibly encoding constraints with unrolled optimization techniques. A linearization technique is proposed to strengthen the efficiency of our proposed layers. The convergence of the proposed IVGD is proven theoretically. Extensive experiments on nine real-world datasets demonstrate that our proposed IVGD outperforms state-of-the-art comparison methods significantly. We have released our code at https://github.com/xianggebenben/IVGD.
Abstract:Despite the recent success of Graph Neural Networks (GNNs), it remains challenging to train a GNN on large graphs, which are prevalent in various applications such as social network, recommender systems, and knowledge graphs. Traditional sampling-based methods accelerate GNN by dropping edges and nodes, which impairs the graph integrity and model performance. Differently, distributed GNN algorithms, which accelerate GNN training by utilizing multiple computing devices, can be classified into two types: "partition-based" methods enjoy low communication costs but suffer from information loss due to dropped edges, while "propagation-based" methods avoid information loss but suffer prohibitive communication overhead. To jointly address these problems, this paper proposes DIstributed Graph Embedding SynchronizaTion (DIGEST), a novel distributed GNN training framework that synergizes the complementary strength of both categories of existing methods. During subgraph parallel training, we propose to let each device store the historical embedding of its neighbors in other subgraphs. Therefore, our method does not discard any neighbors in other subgraphs, nor does it updates them intensively. This effectively avoids (1) the intensive computation on explosively-increasing neighbors and (2) excessive communications across different devices. We proved that the approximation error induced by the staleness of historical embedding can be upper bounded and it does NOT affect the GNN model's expressiveness. More importantly, our convergence analysis demonstrates that DIGEST enjoys a state-of-the-art convergence rate. Extensive experimental evaluation on large, real-world graph datasets shows that DIGEST achieves up to $21.82\times$ speedup without compromising the performance compared to state-of-the-art distributed GNN training frameworks.
Abstract:Temporal domain generalization is a promising yet extremely challenging area where the goal is to learn models under temporally changing data distributions and generalize to unseen data distributions following the trends of the change. The advancement of this area is challenged by: 1) characterizing data distribution drift and its impacts on models, 2) expressiveness in tracking the model dynamics, and 3) theoretical guarantee on the performance. To address them, we propose a Temporal Domain Generalization with Drift-Aware Dynamic Neural Network (DRAIN) framework. Specifically, we formulate the problem into a Bayesian framework that jointly models the relation between data and model dynamics. We then build a recurrent graph generation scenario to characterize the dynamic graph-structured neural networks learned across different time points. It captures the temporal drift of model parameters and data distributions and can predict models in the future without the presence of future data. In addition, we explore theoretical guarantees of the model performance under the challenging temporal DG setting and provide theoretical analysis, including uncertainty and generalization error. Finally, extensive experiments on several real-world benchmarks with temporal drift demonstrate the effectiveness and efficiency of the proposed method.
Abstract:Real-world data exhibiting skewed distributions pose a serious challenge to existing object detectors. Moreover, the samplers in detectors lead to shifted training label distributions, while the tremendous proportion of background to foreground samples severely harms foreground classification. To mitigate these issues, in this paper, we propose Logit Normalization (LogN), a simple technique to self-calibrate the classified logits of detectors in a similar way to batch normalization. In general, our LogN is training- and tuning-free (i.e. require no extra training and tuning process), model- and label distribution-agnostic (i.e. generalization to different kinds of detectors and datasets), and also plug-and-play (i.e. direct application without any bells and whistles). Extensive experiments on the LVIS dataset demonstrate superior performance of LogN to state-of-the-art methods with various detectors and backbones. We also provide in-depth studies on different aspects of our LogN. Further experiments on ImageNet-LT reveal its competitiveness and generalizability. Our LogN can serve as a strong baseline for long-tail object detection and is expected to inspire future research in this field. Code and trained models will be publicly available at https://github.com/MCG-NJU/LogN.
Abstract:Detectors trained with massive labeled data often exhibit dramatic performance degradation in some particular scenarios with data distribution gap. To alleviate this problem of domain shift, conventional wisdom typically concentrates solely on reducing the discrepancy between the source and target domains via attached domain classifiers, yet ignoring the difficulty of such transferable features in coping with both classification and localization subtasks in object detection. To address this issue, in this paper, we propose Task-specific Inconsistency Alignment (TIA), by developing a new alignment mechanism in separate task spaces, improving the performance of the detector on both subtasks. Specifically, we add a set of auxiliary predictors for both classification and localization branches, and exploit their behavioral inconsistencies as finer-grained domain-specific measures. Then, we devise task-specific losses to align such cross-domain disagreement of both subtasks. By optimizing them individually, we are able to well approximate the category- and boundary-wise discrepancies in each task space, and therefore narrow them in a decoupled manner. TIA demonstrates superior results on various scenarios to the previous state-of-the-art methods. It is also observed that both the classification and localization capabilities of the detector are sufficiently strengthened, further demonstrating the effectiveness of our TIA method. Code and trained models are publicly available at https://github.com/MCG-NJU/TIA.
Abstract:Spatiotemporal graph represents a crucial data structure where the nodes and edges are embedded in a geometric space and can evolve dynamically over time. Nowadays, spatiotemporal graph data is becoming increasingly popular and important, ranging from microscale (e.g. protein folding), to middle-scale (e.g. dynamic functional connectivity), to macro-scale (e.g. human mobility network). Although disentangling and understanding the correlations among spatial, temporal, and graph aspects have been a long-standing key topic in network science, they typically rely on network processing hypothesized by human knowledge. This usually fit well towards the graph properties which can be predefined, but cannot do well for the most cases, especially for many key domains where the human has yet very limited knowledge such as protein folding and biological neuronal networks. In this paper, we aim at pushing forward the modeling and understanding of spatiotemporal graphs via new disentangled deep generative models. Specifically, a new Bayesian model is proposed that factorizes spatiotemporal graphs into spatial, temporal, and graph factors as well as the factors that explain the interplay among them. A variational objective function and new mutual information thresholding algorithms driven by information bottleneck theory have been proposed to maximize the disentanglement among the factors with theoretical guarantees. Qualitative and quantitative experiments on both synthetic and real-world datasets demonstrate the superiority of the proposed model over the state-of-the-arts by up to 69.2% for graph generation and 41.5% for interpretability.
Abstract:Designing molecules with specific properties is a long-lasting research problem and is central to advancing crucial domains such as drug discovery and material science. Recent advances in deep graph generative models treat molecule design as graph generation problems which provide new opportunities toward the breakthrough of this long-lasting problem. Existing models, however, have many shortcomings, including poor interpretability and controllability toward desired molecular properties. This paper focuses on new methodologies for molecule generation with interpretable and controllable deep generative models, by proposing new monotonically-regularized graph variational autoencoders. The proposed models learn to represent the molecules with latent variables and then learn the correspondence between them and molecule properties parameterized by polynomial functions. To further improve the intepretability and controllability of molecule generation towards desired properties, we derive new objectives which further enforce monotonicity of the relation between some latent variables and target molecule properties such as toxicity and clogP. Extensive experimental evaluation demonstrates the superiority of the proposed framework on accuracy, novelty, disentanglement, and control towards desired molecular properties. The code is open-source at https://anonymous.4open.science/r/MDVAE-FD2C.
Abstract:Graph Neural Networks (GNNs) have drawn significant attentions over the years and been broadly applied to vital fields that require high security standard such as product recommendation and traffic forecasting. Under such scenarios, exploiting GNN's vulnerabilities and further downgrade its classification performance become highly incentive for adversaries. Previous attackers mainly focus on structural perturbations of existing graphs. Although they deliver promising results, the actual implementation needs capability of manipulating the graph connectivity, which is impractical in some circumstances. In this work, we study the possibility of injecting nodes to evade the victim GNN model, and unlike previous related works with white-box setting, we significantly restrict the amount of accessible knowledge and explore the black-box setting. Specifically, we model the node injection attack as a Markov decision process and propose GA2C, a graph reinforcement learning framework in the fashion of advantage actor critic, to generate realistic features for injected nodes and seamlessly merge them into the original graph following the same topology characteristics. Through our extensive experiments on multiple acknowledged benchmark datasets, we demonstrate the superior performance of our proposed GA2C over existing state-of-the-art methods. The data and source code are publicly accessible at: https://github.com/jumxglhf/GA2C.