School of Computer Science, Shenyang Aerospace University
Abstract:Despite the recent success of Graph Neural Networks (GNNs), it remains challenging to train a GNN on large graphs, which are prevalent in various applications such as social network, recommender systems, and knowledge graphs. Traditional sampling-based methods accelerate GNN by dropping edges and nodes, which impairs the graph integrity and model performance. Differently, distributed GNN algorithms, which accelerate GNN training by utilizing multiple computing devices, can be classified into two types: "partition-based" methods enjoy low communication costs but suffer from information loss due to dropped edges, while "propagation-based" methods avoid information loss but suffer prohibitive communication overhead. To jointly address these problems, this paper proposes DIstributed Graph Embedding SynchronizaTion (DIGEST), a novel distributed GNN training framework that synergizes the complementary strength of both categories of existing methods. During subgraph parallel training, we propose to let each device store the historical embedding of its neighbors in other subgraphs. Therefore, our method does not discard any neighbors in other subgraphs, nor does it updates them intensively. This effectively avoids (1) the intensive computation on explosively-increasing neighbors and (2) excessive communications across different devices. We proved that the approximation error induced by the staleness of historical embedding can be upper bounded and it does NOT affect the GNN model's expressiveness. More importantly, our convergence analysis demonstrates that DIGEST enjoys a state-of-the-art convergence rate. Extensive experimental evaluation on large, real-world graph datasets shows that DIGEST achieves up to $21.82\times$ speedup without compromising the performance compared to state-of-the-art distributed GNN training frameworks.
Abstract:Temporal domain generalization is a promising yet extremely challenging area where the goal is to learn models under temporally changing data distributions and generalize to unseen data distributions following the trends of the change. The advancement of this area is challenged by: 1) characterizing data distribution drift and its impacts on models, 2) expressiveness in tracking the model dynamics, and 3) theoretical guarantee on the performance. To address them, we propose a Temporal Domain Generalization with Drift-Aware Dynamic Neural Network (DRAIN) framework. Specifically, we formulate the problem into a Bayesian framework that jointly models the relation between data and model dynamics. We then build a recurrent graph generation scenario to characterize the dynamic graph-structured neural networks learned across different time points. It captures the temporal drift of model parameters and data distributions and can predict models in the future without the presence of future data. In addition, we explore theoretical guarantees of the model performance under the challenging temporal DG setting and provide theoretical analysis, including uncertainty and generalization error. Finally, extensive experiments on several real-world benchmarks with temporal drift demonstrate the effectiveness and efficiency of the proposed method.
Abstract:Real-world data exhibiting skewed distributions pose a serious challenge to existing object detectors. Moreover, the samplers in detectors lead to shifted training label distributions, while the tremendous proportion of background to foreground samples severely harms foreground classification. To mitigate these issues, in this paper, we propose Logit Normalization (LogN), a simple technique to self-calibrate the classified logits of detectors in a similar way to batch normalization. In general, our LogN is training- and tuning-free (i.e. require no extra training and tuning process), model- and label distribution-agnostic (i.e. generalization to different kinds of detectors and datasets), and also plug-and-play (i.e. direct application without any bells and whistles). Extensive experiments on the LVIS dataset demonstrate superior performance of LogN to state-of-the-art methods with various detectors and backbones. We also provide in-depth studies on different aspects of our LogN. Further experiments on ImageNet-LT reveal its competitiveness and generalizability. Our LogN can serve as a strong baseline for long-tail object detection and is expected to inspire future research in this field. Code and trained models will be publicly available at https://github.com/MCG-NJU/LogN.
Abstract:Detectors trained with massive labeled data often exhibit dramatic performance degradation in some particular scenarios with data distribution gap. To alleviate this problem of domain shift, conventional wisdom typically concentrates solely on reducing the discrepancy between the source and target domains via attached domain classifiers, yet ignoring the difficulty of such transferable features in coping with both classification and localization subtasks in object detection. To address this issue, in this paper, we propose Task-specific Inconsistency Alignment (TIA), by developing a new alignment mechanism in separate task spaces, improving the performance of the detector on both subtasks. Specifically, we add a set of auxiliary predictors for both classification and localization branches, and exploit their behavioral inconsistencies as finer-grained domain-specific measures. Then, we devise task-specific losses to align such cross-domain disagreement of both subtasks. By optimizing them individually, we are able to well approximate the category- and boundary-wise discrepancies in each task space, and therefore narrow them in a decoupled manner. TIA demonstrates superior results on various scenarios to the previous state-of-the-art methods. It is also observed that both the classification and localization capabilities of the detector are sufficiently strengthened, further demonstrating the effectiveness of our TIA method. Code and trained models are publicly available at https://github.com/MCG-NJU/TIA.
Abstract:Spatiotemporal graph represents a crucial data structure where the nodes and edges are embedded in a geometric space and can evolve dynamically over time. Nowadays, spatiotemporal graph data is becoming increasingly popular and important, ranging from microscale (e.g. protein folding), to middle-scale (e.g. dynamic functional connectivity), to macro-scale (e.g. human mobility network). Although disentangling and understanding the correlations among spatial, temporal, and graph aspects have been a long-standing key topic in network science, they typically rely on network processing hypothesized by human knowledge. This usually fit well towards the graph properties which can be predefined, but cannot do well for the most cases, especially for many key domains where the human has yet very limited knowledge such as protein folding and biological neuronal networks. In this paper, we aim at pushing forward the modeling and understanding of spatiotemporal graphs via new disentangled deep generative models. Specifically, a new Bayesian model is proposed that factorizes spatiotemporal graphs into spatial, temporal, and graph factors as well as the factors that explain the interplay among them. A variational objective function and new mutual information thresholding algorithms driven by information bottleneck theory have been proposed to maximize the disentanglement among the factors with theoretical guarantees. Qualitative and quantitative experiments on both synthetic and real-world datasets demonstrate the superiority of the proposed model over the state-of-the-arts by up to 69.2% for graph generation and 41.5% for interpretability.
Abstract:Designing molecules with specific properties is a long-lasting research problem and is central to advancing crucial domains such as drug discovery and material science. Recent advances in deep graph generative models treat molecule design as graph generation problems which provide new opportunities toward the breakthrough of this long-lasting problem. Existing models, however, have many shortcomings, including poor interpretability and controllability toward desired molecular properties. This paper focuses on new methodologies for molecule generation with interpretable and controllable deep generative models, by proposing new monotonically-regularized graph variational autoencoders. The proposed models learn to represent the molecules with latent variables and then learn the correspondence between them and molecule properties parameterized by polynomial functions. To further improve the intepretability and controllability of molecule generation towards desired properties, we derive new objectives which further enforce monotonicity of the relation between some latent variables and target molecule properties such as toxicity and clogP. Extensive experimental evaluation demonstrates the superiority of the proposed framework on accuracy, novelty, disentanglement, and control towards desired molecular properties. The code is open-source at https://anonymous.4open.science/r/MDVAE-FD2C.
Abstract:Graph Neural Networks (GNNs) have drawn significant attentions over the years and been broadly applied to vital fields that require high security standard such as product recommendation and traffic forecasting. Under such scenarios, exploiting GNN's vulnerabilities and further downgrade its classification performance become highly incentive for adversaries. Previous attackers mainly focus on structural perturbations of existing graphs. Although they deliver promising results, the actual implementation needs capability of manipulating the graph connectivity, which is impractical in some circumstances. In this work, we study the possibility of injecting nodes to evade the victim GNN model, and unlike previous related works with white-box setting, we significantly restrict the amount of accessible knowledge and explore the black-box setting. Specifically, we model the node injection attack as a Markov decision process and propose GA2C, a graph reinforcement learning framework in the fashion of advantage actor critic, to generate realistic features for injected nodes and seamlessly merge them into the original graph following the same topology characteristics. Through our extensive experiments on multiple acknowledged benchmark datasets, we demonstrate the superior performance of our proposed GA2C over existing state-of-the-art methods. The data and source code are publicly accessible at: https://github.com/jumxglhf/GA2C.
Abstract:While Deep Neural Networks (DNNs) are deriving the major innovations in nearly every field through their powerful automation, we are also witnessing the peril behind automation as a form of bias, such as automated racism, gender bias, and adversarial bias. As the societal impact of DNNs grows, finding an effective way to steer DNNs to align their behavior with the human mental model has become indispensable in realizing fair and accountable models. We propose a novel framework of Interactive Attention Alignment (IAA) that aims at realizing human-steerable Deep Neural Networks (DNNs). IAA leverages DNN model explanation method as an interactive medium that humans can use to unveil the cases of biased model attention and directly adjust the attention. In improving the DNN using human-generated adjusted attention, we introduce GRADIA, a novel computational pipeline that jointly maximizes attention quality and prediction accuracy. We evaluated IAA framework in Study 1 and GRADIA in Study 2 in a gender classification problem. Study 1 found applying IAA can significantly improve the perceived quality of model attention from human eyes. In Study 2, we found using GRADIA can (1) significantly improve the perceived quality of model attention and (2) significantly improve model performance in scenarios where the training samples are limited. We present implications for future interactive user interfaces design towards human-alignable AI.
Abstract:Periodic graphs are graphs consisting of repetitive local structures, such as crystal nets and polygon mesh. Their generative modeling has great potential in real-world applications such as material design and graphics synthesis. Classical models either rely on domain-specific predefined generation principles (e.g., in crystal net design), or follow geometry-based prescribed rules. Recently, deep generative models has shown great promise in automatically generating general graphs. However, their advancement into periodic graphs have not been well explored due to several key challenges in 1) maintaining graph periodicity; 2) disentangling local and global patterns; and 3) efficiency in learning repetitive patterns. To address them, this paper proposes Periodical-Graph Disentangled Variational Auto-encoder (PGD-VAE), a new deep generative models for periodic graphs that can automatically learn, disentangle, and generate local and global graph patterns. Specifically, we develop a new periodic graph encoder consisting of global-pattern encoder and local-pattern encoder that ensures to disentangle the representation into global and local semantics. We then propose a new periodic graph decoder consisting of local structure decoder, neighborhood decoder, and global structure decoder, as well as the assembler of their outputs that guarantees periodicity. Moreover, we design a new model learning objective that helps ensure the invariance of local-semantic representations for the graphs with the same local structure. Comprehensive experimental evaluations have been conducted to demonstrate the effectiveness of the proposed method. The code of proposed PGD-VAE is availabe at https://github.com/shi-yu-wang/PGD-VAE.
Abstract:This paper proposes an efficient approach to learning disentangled representations with causal mechanisms based on the difference of conditional probabilities in original and new distributions. We approximate the difference with models' generalization abilities so that it fits in the standard machine learning framework and can be efficiently computed. In contrast to the state-of-the-art approach, which relies on the learner's adaptation speed to new distribution, the proposed approach only requires evaluating the model's generalization ability. We provide a theoretical explanation for the advantage of the proposed method, and our experiments show that the proposed technique is 1.9--11.0$\times$ more sample efficient and 9.4--32.4 times quicker than the previous method on various tasks. The source code is available at \url{https://github.com/yuanpeng16/EDCR}.