Abstract:Length-control summarization aims to condense long texts into a short one within a certain length limit. Previous approaches often use autoregressive (AR) models and treat the length requirement as a soft constraint, which may not always be satisfied. In this study, we propose a novel length-control decoding algorithm based on the Directed Acyclic Transformer (DAT). Our approach allows for multiple plausible sequence fragments and predicts a \emph{path} to connect them. In addition, we propose a Sequence Maximum a Posteriori (SeqMAP) decoding algorithm that marginalizes different possible paths and finds the most probable summary satisfying the length budget. Our algorithm is based on beam search, which further facilitates a reranker for performance improvement. Experimental results on the Gigaword and DUC2004 datasets demonstrate our state-of-the-art performance for length-control summarization.
Abstract:SMILES, a crucial textual representation of molecular structures, has garnered significant attention as a foundation for pre-trained language models (LMs). However, most existing pre-trained SMILES LMs focus solely on the single-token level supervision during pre-training, failing to fully leverage the substructural information of molecules. This limitation makes the pre-training task overly simplistic, preventing the models from capturing richer molecular semantic information. Moreover, during pre-training, these SMILES LMs only process corrupted SMILES inputs, never encountering any valid SMILES, which leads to a train-inference mismatch. To address these challenges, we propose SMI-Editor, a novel edit-based pre-trained SMILES LM. SMI-Editor disrupts substructures within a molecule at random and feeds the resulting SMILES back into the model, which then attempts to restore the original SMILES through an editing process. This approach not only introduces fragment-level training signals, but also enables the use of valid SMILES as inputs, allowing the model to learn how to reconstruct complete molecules from these incomplete structures. As a result, the model demonstrates improved scalability and an enhanced ability to capture fragment-level molecular information. Experimental results show that SMI-Editor achieves state-of-the-art performance across multiple downstream molecular tasks, and even outperforming several 3D molecular representation models.