Abstract:Road potholes pose a serious threat to driving safety and comfort, making their detection and assessment a critical task in fields such as autonomous driving. When driving vehicles, the operators usually avoid large potholes and approach smaller ones at reduced speeds to ensure safety. Therefore, accurately estimating pothole area is of vital importance. Most existing vision-based methods rely on distance priors to construct geometric models. However, their performance is susceptible to variations in camera angles and typically relies on the assumption of a flat road surface, potentially leading to significant errors in complex real-world environments. To address these problems, a robust pothole area estimation framework that integrates object detection and monocular depth estimation in a video stream is proposed in this paper. First, to enhance pothole feature extraction and improve the detection of small potholes, ACSH-YOLOv8 is proposed with ACmix module and the small object detection head. Then, the BoT-SORT algorithm is utilized for pothole tracking, while DepthAnything V2 generates depth maps for each frame. With the obtained depth maps and potholes labels, a novel Minimum Bounding Triangulated Pixel (MBTP) method is proposed for pothole area estimation. Finally, Kalman Filter based on Confidence and Distance (CDKF) is developed to maintain consistency of estimation results across consecutive frames. The results show that ACSH-YOLOv8 model achieves an AP(50) of 76.6%, representing a 7.6% improvement over YOLOv8. Through CDKF optimization across consecutive frames, pothole predictions become more robust, thereby enhancing the method's practical applicability.
Abstract:Cross-domain few-shot segmentation (CD-FSS) aims to segment objects of novel classes in new domains, which is often challenging due to the diverse characteristics of target domains and the limited availability of support data. Most CD-FSS methods redesign and retrain in-domain FSS models using various domain-generalization techniques, which are effective but costly to train. To address these issues, we propose adapting informative model structures of the well-trained FSS model for target domains by learning domain characteristics from few-shot labeled support samples during inference, thereby eliminating the need for retraining. Specifically, we first adaptively identify domain-specific model structures by measuring parameter importance using a novel structure Fisher score in a data-dependent manner. Then, we progressively train the selected informative model structures with hierarchically constructed training samples, progressing from fewer to more support shots. The resulting Informative Structure Adaptation (ISA) method effectively addresses domain shifts and equips existing well-trained in-domain FSS models with flexible adaptation capabilities for new domains, eliminating the need to redesign or retrain CD-FSS models on base data. Extensive experiments validate the effectiveness of our method, demonstrating superior performance across multiple CD-FSS benchmarks.
Abstract:Point cloud semantic segmentation can significantly enhance the perception of an intelligent agent. Nevertheless, the discriminative capability of the segmentation network is influenced by the quantity of samples available for different categories. To mitigate the cognitive bias induced by class imbalance, this paper introduces a novel method, namely subspace prototype guidance (\textbf{SPG}), to guide the training of segmentation network. Specifically, the point cloud is initially separated into independent point sets by category to provide initial conditions for the generation of feature subspaces. The auxiliary branch which consists of an encoder and a projection head maps these point sets into separate feature subspaces. Subsequently, the feature prototypes which are extracted from the current separate subspaces and then combined with prototypes of historical subspaces guide the feature space of main branch to enhance the discriminability of features of minority categories. The prototypes derived from the feature space of main branch are also employed to guide the training of the auxiliary branch, forming a supervisory loop to maintain consistent convergence of the entire network. The experiments conducted on the large public benchmarks (i.e. S3DIS, ScanNet v2, ScanNet200, Toronto-3D) and collected real-world data illustrate that the proposed method significantly improves the segmentation performance and surpasses the state-of-the-art method. The code is available at \url{https://github.com/Javion11/PointLiBR.git}.