Abstract:Vision-language models (VLMs) have recently shown remarkable performance in navigation and localization tasks by leveraging large-scale pretraining for semantic understanding. However, applying VLMs to 6-DoF endoscopic camera localization presents several challenges: 1) the lack of large-scale, high-quality, densely annotated, and localization-oriented vision-language datasets in real-world medical settings; 2) limited capability for fine-grained pose regression; and 3) high computational latency when extracting temporal features from past frames. To address these issues, we first construct BREATH dataset, the largest in-vivo endoscopic localization dataset to date, collected in the complex human airway. Building on this dataset, we propose BREATH-VL, a hybrid framework that integrates semantic cues from VLMs with geometric information from vision-based registration methods for accurate 6-DoF pose estimation. Our motivation lies in the complementary strengths of both approaches: VLMs offer generalizable semantic understanding, while registration methods provide precise geometric alignment. To further enhance the VLM's ability to capture temporal context, we introduce a lightweight context-learning mechanism that encodes motion history as linguistic prompts, enabling efficient temporal reasoning without expensive video-level computation. Extensive experiments demonstrate that the vision-language module delivers robust semantic localization in challenging surgical scenes. Building on this, our BREATH-VL outperforms state-of-the-art vision-only localization methods in both accuracy and generalization, reducing translational error by 25.5% compared with the best-performing baseline, while achieving competitive computational latency.
Abstract:Competitive access to modern observatories has intensified as proposal volumes outpace available telescope time, making timely, consistent, and transparent peer review a critical bottleneck for the advancement of astronomy. Automating parts of this process is therefore both scientifically significant and operationally necessary to ensure fair allocation and reproducible decisions at scale. We present AstroReview, an open-source, agent-based framework that automates proposal review in three stages: (i) novelty and scientific merit, (ii) feasibility and expected yield, and (iii) meta-review and reliability verification. Task isolation and explicit reasoning traces curb hallucinations and improve transparency. Without any domain specific fine tuning, AstroReview used in our experiments only for the last stage, correctly identifies genuinely accepted proposals with an accuracy of 87%. The AstroReview in Action module replicates the review and refinement loop; with its integrated Proposal Authoring Agent, the acceptance rate of revised drafts increases by 66% after two iterations, showing that iterative feedback combined with automated meta-review and reliability verification delivers measurable quality gains. Together, these results point to a practical path toward scalable, auditable, and higher throughput proposal review for resource limited facilities.