Abstract:Instruction-following is critical for large language models, but real-world instructions often contain logical structures such as sequential dependencies and conditional branching. Existing methods typically construct datasets with parallel constraints and optimize average rewards, ignoring logical dependencies and yielding noisy signals. We propose a logic-structured training framework LSRIF that explicitly models instruction logic. We first construct a dataset LSRInstruct with constraint structures such as parallel, sequential, and conditional types, and then design structure-aware rewarding method LSRIF including average aggregation for parallel structures, failure-penalty propagation for sequential structures, and selective rewards for conditional branches. Experiments show LSRIF brings significant improvements in instruction-following (in-domain and out-of-domain) and general reasoning. Analysis reveals that learning with explicit logic structures brings parameter updates in attention layers and sharpens token-level attention to constraints and logical operators.
Abstract:Semantic segmentation is a fundamental visual task that finds extensive deployment in applications with security-sensitive considerations. Nonetheless, recent work illustrates the adversarial vulnerability of semantic segmentation models to white-box attacks. However, its adversarial robustness against black-box attacks has not been fully explored. In this paper, we present the first exploration of black-box decision-based attacks on semantic segmentation. First, we analyze the challenges that semantic segmentation brings to decision-based attacks through the case study. Then, to address these challenges, we first propose a decision-based attack on semantic segmentation, called Discrete Linear Attack (DLA). Based on random search and proxy index, we utilize the discrete linear noises for perturbation exploration and calibration to achieve efficient attack efficiency. We conduct adversarial robustness evaluation on 5 models from Cityscapes and ADE20K under 8 attacks. DLA shows its formidable power on Cityscapes by dramatically reducing PSPNet's mIoU from an impressive 77.83% to a mere 2.14% with just 50 queries.