Abstract:Automated Driving System (ADS) acts as the brain of autonomous vehicles, responsible for their safety and efficiency. Safe deployment requires thorough testing in diverse real-world scenarios and compliance with traffic laws like speed limits, signal obedience, and right-of-way rules. Violations like running red lights or speeding pose severe safety risks. However, current testing approaches face significant challenges: limited ability to generate complex and high-risk law-breaking scenarios, and failing to account for complex interactions involving multiple vehicles and critical situations. To address these challenges, we propose ROMAN, a novel scenario generation approach for ADS testing that combines a multi-head attention network with a traffic law weighting mechanism. ROMAN is designed to generate high-risk violation scenarios to enable more thorough and targeted ADS evaluation. The multi-head attention mechanism models interactions among vehicles, traffic signals, and other factors. The traffic law weighting mechanism implements a workflow that leverages an LLM-based risk weighting module to evaluate violations based on the two dimensions of severity and occurrence. We have evaluated ROMAN by testing the Baidu Apollo ADS within the CARLA simulation platform and conducting extensive experiments to measure its performance. Experimental results demonstrate that ROMAN surpassed state-of-the-art tools ABLE and LawBreaker by achieving 7.91% higher average violation count than ABLE and 55.96% higher than LawBreaker, while also maintaining greater scenario diversity. In addition, only ROMAN successfully generated violation scenarios for every clause of the input traffic laws, enabling it to identify more high-risk violations than existing approaches.
Abstract:Power flow estimation plays a vital role in ensuring the stability and reliability of electrical power systems, particularly in the context of growing network complexities and renewable energy integration. However, existing studies often fail to adequately address the unique characteristics of power systems, such as the sparsity of network connections and the critical importance of the unique Slack node, which poses significant challenges in achieving high-accuracy estimations. In this paper, we present SenseFlow, a novel physics-informed and self-ensembling iterative framework that integrates two main designs, the Physics-Informed Power Flow Network (FlowNet) and Self-Ensembling Iterative Estimation (SeIter), to carefully address the unique properties of the power system and thereby enhance the power flow estimation. Specifically, SenseFlow enforces the FlowNet to gradually predict high-precision voltage magnitudes and phase angles through the iterative SeIter process. On the one hand, FlowNet employs the Virtual Node Attention and Slack-Gated Feed-Forward modules to facilitate efficient global-local communication in the face of network sparsity and amplify the influence of the Slack node on angle predictions, respectively. On the other hand, SeIter maintains an exponential moving average of FlowNet's parameters to create a robust ensemble model that refines power state predictions throughout the iterative fitting process. Experimental results demonstrate that SenseFlow outperforms existing methods, providing a promising solution for high-accuracy power flow estimation across diverse grid configurations.