Abstract:Machine unlearning (MU) is essential for enforcing the right to be forgotten in machine learning systems. A key challenge of MU is how to reliably audit whether a model has truly forgotten specified training data. Membership Inference Attacks (MIAs) are widely used for unlearning auditing, where samples that evade membership detection are often regarded as successfully forgotten. After carefully revisiting the reliability of MIA, we show that this assumption is flawed: failed membership inference does not imply true forgetting. We theoretically demonstrate that MIA-based auditing, when formulated as a binary classification problem, inevitably incurs statistical errors whose magnitude cannot be observed during the auditing process. This leads to overly optimistic evaluations of unlearning performance, while incurring substantial computational overhead due to shadow model training. To address these limitations, we propose Statistical Membership Inference Attack (SMIA), a novel training-free and highly effective auditing framework. SMIA directly compares the distributions of member and non-member data using statistical tests, eliminating the need for learned attack models. Moreover, SMIA outputs both a forgetting rate and a corresponding confidence interval, enabling quantified reliability of the auditing results. Extensive experiments show that SMIA provides more reliable auditing with significantly lower computational cost than existing MIA-based approaches. Notably, the theoretical guarantees and empirical effectiveness of SMIA suggest it as a new paradigm for reliable machine unlearning auditing.




Abstract:Training prohibited item detection models requires a large amount of X-ray security images, but collecting and annotating these images is time-consuming and laborious. To address data insufficiency, X-ray security image synthesis methods composite images to scale up datasets. However, previous methods primarily follow a two-stage pipeline, where they implement labor-intensive foreground extraction in the first stage and then composite images in the second stage. Such a pipeline introduces inevitable extra labor cost and is not efficient. In this paper, we propose a one-stage X-ray security image synthesis pipeline (Xsyn) based on text-to-image generation, which incorporates two effective strategies to improve the usability of synthetic images. The Cross-Attention Refinement (CAR) strategy leverages the cross-attention map from the diffusion model to refine the bounding box annotation. The Background Occlusion Modeling (BOM) strategy explicitly models background occlusion in the latent space to enhance imaging complexity. To the best of our knowledge, compared with previous methods, Xsyn is the first to achieve high-quality X-ray security image synthesis without extra labor cost. Experiments demonstrate that our method outperforms all previous methods with 1.2% mAP improvement, and the synthetic images generated by our method are beneficial to improve prohibited item detection performance across various X-ray security datasets and detectors. Code is available at https://github.com/pILLOW-1/Xsyn/.