Abstract:(M)LLM-powered computer use agents (CUA) are emerging as a transformative technique to automate human-computer interaction. However, existing CUA benchmarks predominantly target GUI agents, whose evaluation methods are susceptible to UI changes and ignore function interactions exposed by application APIs, e.g., Model Context Protocol (MCP). To this end, we propose MCPWorld, the first automatic CUA testbed for API, GUI, and API-GUI hybrid agents. A key principle of MCPWorld is the use of "white-box apps", i.e., those with source code availability and can be revised/re-compiled as needed (e.g., adding MCP support), with two notable advantages: (1) It greatly broadens the design space of CUA, such as what and how the app features to be exposed/extracted as CUA-callable APIs. (2) It allows MCPWorld to programmatically verify task completion by directly monitoring application behavior through techniques like dynamic code instrumentation, offering robust, accurate CUA evaluation decoupled from specific agent implementations or UI states. Currently, MCPWorld includes 201 well curated and annotated user tasks, covering diversified use cases and difficulty levels. MCPWorld is also fully containerized with GPU acceleration support for flexible adoption on different OS/hardware environments. Our preliminary experiments, using a representative LLM-powered CUA framework, achieve 75.12% task completion accuracy, simultaneously providing initial evidence on the practical effectiveness of agent automation leveraging MCP. Overall, we anticipate MCPWorld to facilitate and standardize the benchmarking of next-generation computer use agents that can leverage rich external tools. Our code and dataset are publicly available at https://github.com/SAAgent/MCPWorld.
Abstract:Most attention-based image captioning models attend to the image once per word. However, attending once per word is rigid and is easy to miss some information. Attending more times can adjust the attention position, find the missing information back and avoid generating the wrong word. In this paper, we show that attending more times per word can gain improvements in the image captioning task. We propose a flexible two-LSTM merge model to make it convenient to encode more attentions than words. Our captioning model uses two LSTMs to encode the word sequence and the attention sequence respectively. The information of the two LSTMs and the image feature are combined to predict the next word. Experiments on the MSCOCO caption dataset show that our method outperforms the state-of-the-art. Using bottom up features and self-critical training method, our method gets BLEU-4, METEOR, ROUGE-L and CIDEr scores of 0.381, 0.283, 0.580 and 1.261 on the Karpathy test split.