Abstract:3D Gaussian Splatting (3DGS) serves as a highly performant and efficient encoding of scene geometry, appearance, and semantics. Moreover, grounding language in 3D scenes has proven to be an effective strategy for 3D scene understanding. Current Language Gaussian Splatting line of work fall into three main groups: (i) per-scene optimization-based, (ii) per-scene optimization-free, and (iii) generalizable approach. However, most of them are evaluated only on rendered 2D views of a handful of scenes and viewpoints close to the training views, limiting ability and insight into holistic 3D understanding. To address this gap, we propose the first large-scale benchmark that systematically assesses these three groups of methods directly in 3D space, evaluating on 1060 scenes across three indoor datasets and one outdoor dataset. Benchmark results demonstrate a clear advantage of the generalizable paradigm, particularly in relaxing the scene-specific limitation, enabling fast feed-forward inference on novel scenes, and achieving superior segmentation performance. We further introduce GaussianWorld-49K a carefully curated 3DGS dataset comprising around 49K diverse indoor and outdoor scenes obtained from multiple sources, with which we demonstrate the generalizable approach could harness strong data priors. Our codes, benchmark, and datasets will be made public to accelerate research in generalizable 3DGS scene understanding.
Abstract:TL;DR: Gaussian Splatting is a widely adopted approach for 3D scene representation that offers efficient, high-quality 3D reconstruction and rendering. A major reason for the success of 3DGS is its simplicity of representing a scene with a set of Gaussians, which makes it easy to interpret and adapt. To enhance scene understanding beyond the visual representation, approaches have been developed that extend 3D Gaussian Splatting with semantic vision-language features, especially allowing for open-set tasks. In this setting, the language features of 3D Gaussian Splatting are often aggregated from multiple 2D views. Existing works address this aggregation problem using cumbersome techniques that lead to high computational cost and training time. In this work, we show that the sophisticated techniques for language-grounded 3D Gaussian Splatting are simply unnecessary. Instead, we apply Occam's razor to the task at hand and perform weighted multi-view feature aggregation using the weights derived from the standard rendering process, followed by a simple heuristic-based noisy Gaussian filtration. Doing so offers us state-of-the-art results with a speed-up of two orders of magnitude. We showcase our results in two commonly used benchmark datasets: LERF and 3D-OVS. Our simple approach allows us to perform reasoning directly in the language features, without any compression whatsoever. Such modeling in turn offers easy scene manipulation, unlike the existing methods -- which we illustrate using an application of object insertion in the scene. Furthermore, we provide a thorough discussion regarding the significance of our contributions within the context of the current literature. Project Page: https://insait-institute.github.io/OccamLGS/