Alert button
Picture for Jacob L. Jaremko

Jacob L. Jaremko

Alert button

Self-supervised TransUNet for Ultrasound regional segmentation of the distal radius in children

Sep 18, 2023
Yuyue Zhou, Jessica Knight, Banafshe Felfeliyan, Christopher Keen, Abhilash Rakkunedeth Hareendranathan, Jacob L. Jaremko

Supervised deep learning offers great promise to automate analysis of medical images from segmentation to diagnosis. However, their performance highly relies on the quality and quantity of the data annotation. Meanwhile, curating large annotated datasets for medical images requires a high level of expertise, which is time-consuming and expensive. Recently, to quench the thirst for large data sets with high-quality annotation, self-supervised learning (SSL) methods using unlabeled domain-specific data, have attracted attention. Therefore, designing an SSL method that relies on minimal quantities of labeled data has far-reaching significance in medical images. This paper investigates the feasibility of deploying the Masked Autoencoder for SSL (SSL-MAE) of TransUNet, for segmenting bony regions from children's wrist ultrasound scans. We found that changing the embedding and loss function in SSL-MAE can produce better downstream results compared to the original SSL-MAE. In addition, we determined that only pretraining TransUNet embedding and encoder with SSL-MAE does not work as well as TransUNet without SSL-MAE pretraining on downstream segmentation tasks.

Viaarxiv icon

Weakly Supervised Medical Image Segmentation With Soft Labels and Noise Robust Loss

Sep 16, 2022
Banafshe Felfeliyan, Abhilash Hareendranathan, Gregor Kuntze, Stephanie Wichuk, Nils D. Forkert, Jacob L. Jaremko, Janet L. Ronsky

Figure 1 for Weakly Supervised Medical Image Segmentation With Soft Labels and Noise Robust Loss
Figure 2 for Weakly Supervised Medical Image Segmentation With Soft Labels and Noise Robust Loss

Recent advances in deep learning algorithms have led to significant benefits for solving many medical image analysis problems. Training deep learning models commonly requires large datasets with expert-labeled annotations. However, acquiring expert-labeled annotation is not only expensive but also is subjective, error-prone, and inter-/intra- observer variability introduces noise to labels. This is particularly a problem when using deep learning models for segmenting medical images due to the ambiguous anatomical boundaries. Image-based medical diagnosis tools using deep learning models trained with incorrect segmentation labels can lead to false diagnoses and treatment suggestions. Multi-rater annotations might be better suited to train deep learning models with small training sets compared to single-rater annotations. The aim of this paper was to develop and evaluate a method to generate probabilistic labels based on multi-rater annotations and anatomical knowledge of the lesion features in MRI and a method to train segmentation models using probabilistic labels using normalized active-passive loss as a "noise-tolerant loss" function. The model was evaluated by comparing it to binary ground truth for 17 knees MRI scans for clinical segmentation and detection of bone marrow lesions (BML). The proposed method successfully improved precision 14, recall 22, and Dice score 8 percent compared to a binary cross-entropy loss function. Overall, the results of this work suggest that the proposed normalized active-passive loss using soft labels successfully mitigated the effects of noisy labels.

Viaarxiv icon

Self-Supervised-RCNN for Medical Image Segmentation with Limited Data Annotation

Jul 17, 2022
Banafshe Felfeliyan, Abhilash Hareendranathan, Gregor Kuntze, David Cornell, Nils D. Forkert, Jacob L. Jaremko, Janet L. Ronsky

Figure 1 for Self-Supervised-RCNN for Medical Image Segmentation with Limited Data Annotation
Figure 2 for Self-Supervised-RCNN for Medical Image Segmentation with Limited Data Annotation
Figure 3 for Self-Supervised-RCNN for Medical Image Segmentation with Limited Data Annotation
Figure 4 for Self-Supervised-RCNN for Medical Image Segmentation with Limited Data Annotation

Many successful methods developed for medical image analysis that are based on machine learning use supervised learning approaches, which often require large datasets annotated by experts to achieve high accuracy. However, medical data annotation is time-consuming and expensive, especially for segmentation tasks. To solve the problem of learning with limited labeled medical image data, an alternative deep learning training strategy based on self-supervised pretraining on unlabeled MRI scans is proposed in this work. Our pretraining approach first, randomly applies different distortions to random areas of unlabeled images and then predicts the type of distortions and loss of information. To this aim, an improved version of Mask-RCNN architecture has been adapted to localize the distortion location and recover the original image pixels. The effectiveness of the proposed method for segmentation tasks in different pre-training and fine-tuning scenarios is evaluated based on the Osteoarthritis Initiative dataset. Using this self-supervised pretraining method improved the Dice score by 20% compared to training from scratch. The proposed self-supervised learning is simple, effective, and suitable for different ranges of medical image analysis tasks including anomaly detection, segmentation, and classification.

Viaarxiv icon

Improved-Mask R-CNN: Towards an Accurate Generic MSK MRI instance segmentation platform (Data from the Osteoarthritis Initiative)

Jul 27, 2021
Banafshe Felfeliyan, Abhilash Hareendranathan, Gregor Kuntze, Jacob L. Jaremko, Janet L. Ronsky

Figure 1 for Improved-Mask R-CNN: Towards an Accurate Generic MSK MRI instance segmentation platform (Data from the Osteoarthritis Initiative)
Figure 2 for Improved-Mask R-CNN: Towards an Accurate Generic MSK MRI instance segmentation platform (Data from the Osteoarthritis Initiative)
Figure 3 for Improved-Mask R-CNN: Towards an Accurate Generic MSK MRI instance segmentation platform (Data from the Osteoarthritis Initiative)
Figure 4 for Improved-Mask R-CNN: Towards an Accurate Generic MSK MRI instance segmentation platform (Data from the Osteoarthritis Initiative)

Objective assessment of Magnetic Resonance Imaging (MRI) scans of osteoarthritis (OA) can address the limitation of the current OA assessment. Segmentation of bone, cartilage, and joint fluid is necessary for the OA objective assessment. Most of the proposed segmentation methods are not performing instance segmentation and suffer from class imbalance problems. This study deployed Mask R-CNN instance segmentation and improved it (improved-Mask R-CNN (iMaskRCNN)) to obtain a more accurate generalized segmentation for OA-associated tissues. Training and validation of the method were performed using 500 MRI knees from the Osteoarthritis Initiative (OAI) dataset and 97 MRI scans of patients with symptomatic hip OA. Three modifications to Mask R-CNN yielded the iMaskRCNN: adding a 2nd ROIAligned block, adding an extra decoder layer to the mask-header, and connecting them by a skip connection. The results were assessed using Hausdorff distance, dice score, and coefficients of variation (CoV). The iMaskRCNN led to improved bone and cartilage segmentation compared to Mask RCNN as indicated with the increase in dice score from 95% to 98% for the femur, 95% to 97% for tibia, 71% to 80% for femoral cartilage, and 81% to 82% for tibial cartilage. For the effusion detection, dice improved with iMaskRCNN 72% versus MaskRCNN 71%. The CoV values for effusion detection between Reader1 and Mask R-CNN (0.33), Reader1 and iMaskRCNN (0.34), Reader2 and Mask R-CNN (0.22), Reader2 and iMaskRCNN (0.29) are close to CoV between two readers (0.21), indicating a high agreement between the human readers and both Mask R-CNN and iMaskRCNN. Mask R-CNN and iMaskRCNN can reliably and simultaneously extract different scale articular tissues involved in OA, forming the foundation for automated assessment of OA. The iMaskRCNN results show that the modification improved the network performance around the edges.

Viaarxiv icon

Sample Efficient Learning of Image-Based Diagnostic Classifiers Using Probabilistic Labels

Feb 11, 2021
Roberto Vega, Pouneh Gorji, Zichen Zhang, Xuebin Qin, Abhilash Rakkunedeth Hareendranathan, Jeevesh Kapur, Jacob L. Jaremko, Russell Greiner

Figure 1 for Sample Efficient Learning of Image-Based Diagnostic Classifiers Using Probabilistic Labels
Figure 2 for Sample Efficient Learning of Image-Based Diagnostic Classifiers Using Probabilistic Labels
Figure 3 for Sample Efficient Learning of Image-Based Diagnostic Classifiers Using Probabilistic Labels
Figure 4 for Sample Efficient Learning of Image-Based Diagnostic Classifiers Using Probabilistic Labels

Deep learning approaches often require huge datasets to achieve good generalization. This complicates its use in tasks like image-based medical diagnosis, where the small training datasets are usually insufficient to learn appropriate data representations. For such sensitive tasks it is also important to provide the confidence in the predictions. Here, we propose a way to learn and use probabilistic labels to train accurate and calibrated deep networks from relatively small datasets. We observe gains of up to 22% in the accuracy of models trained with these labels, as compared with traditional approaches, in three classification tasks: diagnosis of hip dysplasia, fatty liver, and glaucoma. The outputs of models trained with probabilistic labels are calibrated, allowing the interpretation of its predictions as proper probabilities. We anticipate this approach will apply to other tasks where few training instances are available and expert knowledge can be encoded as probabilities.

* To appear in the Proceedings of the 24 th International Conference on Artificial Intelligence and Statistics (AISTATS) 2021, San Diego,California, USA. PMLR: Volume 130 
Viaarxiv icon

End-to-end detection-segmentation network with ROI convolution

Jan 08, 2018
Zichen Zhang, Min Tang, Dana Cobzas, Dornoosh Zonoobi, Martin Jagersand, Jacob L. Jaremko

Figure 1 for End-to-end detection-segmentation network with ROI convolution
Figure 2 for End-to-end detection-segmentation network with ROI convolution
Figure 3 for End-to-end detection-segmentation network with ROI convolution

We propose an end-to-end neural network that improves the segmentation accuracy of fully convolutional networks by incorporating a localization unit. This network performs object localization first, which is then used as a cue to guide the training of the segmentation network. We test the proposed method on a segmentation task of small objects on a clinical dataset of ultrasound images. We show that by jointly learning for detection and segmentation, the proposed network is able to improve the segmentation accuracy compared to only learning for segmentation.

* accepted at ISBI 2018 
Viaarxiv icon

Segmentation-by-Detection: A Cascade Network for Volumetric Medical Image Segmentation

Oct 31, 2017
Min Tang, Zichen Zhang, Dana Cobzas, Martin Jagersand, Jacob L. Jaremko

Figure 1 for Segmentation-by-Detection: A Cascade Network for Volumetric Medical Image Segmentation
Figure 2 for Segmentation-by-Detection: A Cascade Network for Volumetric Medical Image Segmentation
Figure 3 for Segmentation-by-Detection: A Cascade Network for Volumetric Medical Image Segmentation
Figure 4 for Segmentation-by-Detection: A Cascade Network for Volumetric Medical Image Segmentation

We propose an attention mechanism for 3D medical image segmentation. The method, named segmentation-by-detection, is a cascade of a detection module followed by a segmentation module. The detection module enables a region of interest to come to attention and produces a set of object region candidates which are further used as an attention model. Rather than dealing with the entire volume, the segmentation module distills the information from the potential region. This scheme is an efficient solution for volumetric data as it reduces the influence of the surrounding noise which is especially important for medical data with low signal-to-noise ratio. Experimental results on 3D ultrasound data of the femoral head shows superiority of the proposed method when compared with a standard fully convolutional network like the U-Net.

Viaarxiv icon