Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for J. Andrew Bagnell

Of Moments and Matching: Trade-offs and Treatments in Imitation Learning


Mar 04, 2021
Gokul Swamy, Sanjiban Choudhury, Zhiwei Steven Wu, J. Andrew Bagnell


  Access Paper or Ask Questions

Feedback in Imitation Learning: The Three Regimes of Covariate Shift


Feb 11, 2021
Jonathan Spencer, Sanjiban Choudhury, Arun Venkatraman, Brian Ziebart, J. Andrew Bagnell


  Access Paper or Ask Questions

Feedback in Imitation Learning: Confusion on Causality and Covariate Shift


Feb 04, 2021
Jonathan Spencer, Sanjiban Choudhury, Arun Venkatraman, Brian Ziebart, J. Andrew Bagnell


  Access Paper or Ask Questions

CMAX++ : Leveraging Experience in Planning and Execution using Inaccurate Models


Oct 15, 2020
Anirudh Vemula, J. Andrew Bagnell, Maxim Likhachev


  Access Paper or Ask Questions

CMAX++ : Leveraging Experience for Planning and Execution using Inaccurate Models


Sep 21, 2020
Anirudh Vemula, J. Andrew Bagnell, Maxim Likhachev


  Access Paper or Ask Questions

TRON: A Fast Solver for Trajectory Optimization with Non-Smooth Cost Functions


Apr 01, 2020
Anirudh Vemula, J. Andrew Bagnell

* Submitted to CDC 2020 

  Access Paper or Ask Questions

Exploration in Action Space


Mar 31, 2020
Anirudh Vemula, Wen Sun, J. Andrew Bagnell

* Presented at RSS 2018 in Learning and Inference in Robotics: Integrating Structure, Priors and Models workshop. arXiv admin note: text overlap with arXiv:1901.11503 

  Access Paper or Ask Questions

Planning and Execution using Inaccurate Models with Provable Guarantees


Mar 15, 2020
Anirudh Vemula, Yash Oza, J. Andrew Bagnell, Maxim Likhachev

* Code at https://github.com/vvanirudh/CMAX and video at https://youtu.be/eQmAeWIhjO8 

  Access Paper or Ask Questions

Provably Efficient Imitation Learning from Observation Alone


Jun 11, 2019
Wen Sun, Anirudh Vemula, Byron Boots, J. Andrew Bagnell

* ICML 2019 

  Access Paper or Ask Questions

Contrasting Exploration in Parameter and Action Space: A Zeroth-Order Optimization Perspective


Jan 31, 2019
Anirudh Vemula, Wen Sun, J. Andrew Bagnell

* Accepted at AISTATS 2019 

  Access Paper or Ask Questions

An Algorithmic Perspective on Imitation Learning


Nov 16, 2018
Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter Abbeel, Jan Peters

* 187 pages. Published in Foundations and Trends in Robotics 

  Access Paper or Ask Questions

Truncated Horizon Policy Search: Combining Reinforcement Learning & Imitation Learning


May 29, 2018
Wen Sun, J. Andrew Bagnell, Byron Boots

* ICLR 2018 

  Access Paper or Ask Questions

Dual Policy Iteration


May 28, 2018
Wen Sun, Geoffrey J. Gordon, Byron Boots, J. Andrew Bagnell


  Access Paper or Ask Questions

Learning Anytime Predictions in Neural Networks via Adaptive Loss Balancing


May 25, 2018
Hanzhang Hu, Debadeepta Dey, Martial Hebert, J. Andrew Bagnell


  Access Paper or Ask Questions

Log-DenseNet: How to Sparsify a DenseNet


Oct 30, 2017
Hanzhang Hu, Debadeepta Dey, Allison Del Giorno, Martial Hebert, J. Andrew Bagnell


  Access Paper or Ask Questions

Predictive-State Decoders: Encoding the Future into Recurrent Networks


Sep 25, 2017
Arun Venkatraman, Nicholas Rhinehart, Wen Sun, Lerrel Pinto, Martial Hebert, Byron Boots, Kris M. Kitani, J. Andrew Bagnell

* NIPS 2017 

  Access Paper or Ask Questions

Ignoring Distractors in the Absence of Labels: Optimal Linear Projection to Remove False Positives During Anomaly Detection


Sep 13, 2017
Allison Del Giorno, J. Andrew Bagnell, Martial Hebert

* 13 pages, 6 figures 

  Access Paper or Ask Questions

Shared Autonomy via Hindsight Optimization for Teleoperation and Teaming


Jun 01, 2017
Shervin Javdani, Henny Admoni, Stefania Pellegrinelli, Siddhartha S. Srinivasa, J. Andrew Bagnell


  Access Paper or Ask Questions

A Fast Stochastic Contact Model for Planar Pushing and Grasping: Theory and Experimental Validation


May 30, 2017
Jiaji Zhou, J. Andrew Bagnell, Matthew T. Mason

* Robotics: Science and Systems 2017 

  Access Paper or Ask Questions

Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction


Mar 03, 2017
Wen Sun, Arun Venkatraman, Geoffrey J. Gordon, Byron Boots, J. Andrew Bagnell

* 17 pages 

  Access Paper or Ask Questions

Gradient Boosting on Stochastic Data Streams


Mar 01, 2017
Hanzhang Hu, Wen Sun, Arun Venkatraman, Martial Hebert, J. Andrew Bagnell

* To appear in AISTATS 2017 

  Access Paper or Ask Questions

Efficient Feature Group Sequencing for Anytime Linear Prediction


Dec 05, 2016
Hanzhang Hu, Alexander Grubb, J. Andrew Bagnell, Martial Hebert

* Published in UAI 2016, Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence, UAI 2016 

  Access Paper or Ask Questions

A Discriminative Framework for Anomaly Detection in Large Videos


Sep 28, 2016
Allison Del Giorno, J. Andrew Bagnell, Martial Hebert

* 14 pages without references, 16 pages with. 7 figures. Accepted to ECCV 2016 

  Access Paper or Ask Questions

Learning Transferable Policies for Monocular Reactive MAV Control


Aug 01, 2016
Shreyansh Daftry, J. Andrew Bagnell, Martial Hebert

* International Symposium on Experimental Robotics (ISER 2016) 

  Access Paper or Ask Questions

Introspective Perception: Learning to Predict Failures in Vision Systems


Jul 28, 2016
Shreyansh Daftry, Sam Zeng, J. Andrew Bagnell, Martial Hebert

* IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2016) 

  Access Paper or Ask Questions

A Convex Polynomial Force-Motion Model for Planar Sliding: Identification and Application


Jun 16, 2016
Jiaji Zhou, Robert Paolini, J. Andrew Bagnell, Matthew T. Mason

* 2016 IEEE International Conference on Robotics and Automation (ICRA) 

  Access Paper or Ask Questions

Learning to Filter with Predictive State Inference Machines


May 30, 2016
Wen Sun, Arun Venkatraman, Byron Boots, J. Andrew Bagnell

* ICML 2016 

  Access Paper or Ask Questions