Abstract:Session-based Recommender Systems (SRSs) have been actively developed to recommend the next item of an anonymous short item sequence (i.e., session). Unlike sequence-aware recommender systems where the whole interaction sequence of each user can be used to model both the short-term interest and the general interest of the user, the absence of user-dependent information in SRSs makes it difficult to directly derive the user's general interest from data. Therefore, existing SRSs have focused on how to effectively model the information about short-term interest within the sessions, but they are insufficient to capture the general interest of users. To this end, we propose a novel framework to overcome the limitation of SRSs, named ProxySR, which imitates the missing information in SRSs (i.e., general interest of users) by modeling proxies of sessions. ProxySR selects a proxy for the input session in an unsupervised manner, and combines it with the encoded short-term interest of the session. As a proxy is jointly learned with the short-term interest and selected by multiple sessions, a proxy learns to play the role of the general interest of a user and ProxySR learns how to select a suitable proxy for an input session. Moreover, we propose another real-world situation of SRSs where a few users are logged-in and leave their identifiers in sessions, and a revision of ProxySR for the situation. Our experiments on real-world datasets show that ProxySR considerably outperforms the state-of-the-art competitors, and the proxies successfully imitate the general interest of the users without any user-dependent information.
Abstract:Recommender Systems (RS) have employed knowledge distillation which is a model compression technique training a compact student model with the knowledge transferred from a pre-trained large teacher model. Recent work has shown that transferring knowledge from the teacher's intermediate layer significantly improves the recommendation quality of the student. However, they transfer the knowledge of individual representation point-wise and thus have a limitation in that primary information of RS lies in the relations in the representation space. This paper proposes a new topology distillation approach that guides the student by transferring the topological structure built upon the relations in the teacher space. We first observe that simply making the student learn the whole topological structure is not always effective and even degrades the student's performance. We demonstrate that because the capacity of the student is highly limited compared to that of the teacher, learning the whole topological structure is daunting for the student. To address this issue, we propose a novel method named Hierarchical Topology Distillation (HTD) which distills the topology hierarchically to cope with the large capacity gap. Our extensive experiments on real-world datasets show that the proposed method significantly outperforms the state-of-the-art competitors. We also provide in-depth analyses to ascertain the benefit of distilling the topology for RS.
Abstract:Recommender systems (RS) have started to employ knowledge distillation, which is a model compression technique training a compact model (student) with the knowledge transferred from a cumbersome model (teacher). The state-of-the-art methods rely on unidirectional distillation transferring the knowledge only from the teacher to the student, with an underlying assumption that the teacher is always superior to the student. However, we demonstrate that the student performs better than the teacher on a significant proportion of the test set, especially for RS. Based on this observation, we propose Bidirectional Distillation (BD) framework whereby both the teacher and the student collaboratively improve with each other. Specifically, each model is trained with the distillation loss that makes to follow the other's prediction along with its original loss function. For effective bidirectional distillation, we propose rank discrepancy-aware sampling scheme to distill only the informative knowledge that can fully enhance each other. The proposed scheme is designed to effectively cope with a large performance gap between the teacher and the student. Trained in the bidirectional way, it turns out that both the teacher and the student are significantly improved compared to when being trained separately. Our extensive experiments on real-world datasets show that our proposed framework consistently outperforms the state-of-the-art competitors. We also provide analyses for an in-depth understanding of BD and ablation studies to verify the effectiveness of each proposed component.
Abstract:Recent studies on neural networks with pre-trained weights (i.e., BERT) have mainly focused on a low-dimensional subspace, where the embedding vectors computed from input words (or their contexts) are located. In this work, we propose a new approach to finding and regularizing the remainder of the space, referred to as out-of-manifold, which cannot be accessed through the words. Specifically, we synthesize the out-of-manifold embeddings based on two embeddings obtained from actually-observed words, to utilize them for fine-tuning the network. A discriminator is trained to detect whether an input embedding is located inside the manifold or not, and simultaneously, a generator is optimized to produce new embeddings that can be easily identified as out-of-manifold by the discriminator. These two modules successfully collaborate in a unified and end-to-end manner for regularizing the out-of-manifold. Our extensive evaluation on various text classification benchmarks demonstrates the effectiveness of our approach, as well as its good compatibility with existing data augmentation techniques which aim to enhance the manifold.
Abstract:The goal of one-class collaborative filtering (OCCF) is to identify the user-item pairs that are positively-related but have not been interacted yet, where only a small portion of positive user-item interactions (e.g., users' implicit feedback) are observed. For discriminative modeling between positive and negative interactions, most previous work relied on negative sampling to some extent, which refers to considering unobserved user-item pairs as negative, as actual negative ones are unknown. However, the negative sampling scheme has critical limitations because it may choose "positive but unobserved" pairs as negative. This paper proposes a novel OCCF framework, named as BUIR, which does not require negative sampling. To make the representations of positively-related users and items similar to each other while avoiding a collapsed solution, BUIR adopts two distinct encoder networks that learn from each other; the first encoder is trained to predict the output of the second encoder as its target, while the second encoder provides the consistent targets by slowly approximating the first encoder. In addition, BUIR effectively alleviates the data sparsity issue of OCCF, by applying stochastic data augmentation to encoder inputs. Based on the neighborhood information of users and items, BUIR randomly generates the augmented views of each positive interaction each time it encodes, then further trains the model by this self-supervision. Our extensive experiments demonstrate that BUIR consistently and significantly outperforms all baseline methods by a large margin especially for much sparse datasets in which any assumptions about negative interactions are less valid.
Abstract:Recommender systems have achieved great success in modeling user's preferences on items and predicting the next item the user would consume. Recently, there have been many efforts to utilize time information of users' interactions with items to capture inherent temporal patterns of user behaviors and offer timely recommendations at a given time. Existing studies regard the time information as a single type of feature and focus on how to associate it with user preferences on items. However, we argue they are insufficient for fully learning the time information because the temporal patterns of user preference are usually heterogeneous. A user's preference for a particular item may 1) increase periodically or 2) evolve over time under the influence of significant recent events, and each of these two kinds of temporal pattern appears with some unique characteristics. In this paper, we first define the unique characteristics of the two kinds of temporal pattern of user preference that should be considered in time-aware recommender systems. Then we propose a novel recommender system for timely recommendations, called TimelyRec, which jointly learns the heterogeneous temporal patterns of user preference considering all of the defined characteristics. In TimelyRec, a cascade of two encoders captures the temporal patterns of user preference using a proposed attention module for each encoder. Moreover, we introduce an evaluation scenario that evaluates the performance on predicting an interesting item and when to recommend the item simultaneously in top-K recommendation (i.e., item-timing recommendation). Our extensive experiments on a scenario for item recommendation and the proposed scenario for item-timing recommendation on real-world datasets demonstrate the superiority of TimelyRec and the proposed attention modules.
Abstract:With the increase of available time series data, predicting their class labels has been one of the most important challenges in a wide range of disciplines. Recent studies on time series classification show that convolutional neural networks (CNN) achieved the state-of-the-art performance as a single classifier. In this work, pointing out that the global pooling layer that is usually adopted by existing CNN classifiers discards the temporal information of high-level features, we present a dynamic temporal pooling (DTP) technique that reduces the temporal size of hidden representations by aggregating the features at the segment-level. For the partition of a whole series into multiple segments, we utilize dynamic time warping (DTW) to align each time point in a temporal order with the prototypical features of the segments, which can be optimized simultaneously with the network parameters of CNN classifiers. The DTP layer combined with a fully-connected layer helps to extract further discriminative features considering their temporal position within an input time series. Extensive experiments on both univariate and multivariate time series datasets show that our proposed pooling significantly improves the classification performance.
Abstract:The capability of reliably detecting out-of-distribution samples is one of the key factors in deploying a good classifier, as the test distribution always does not match with the training distribution in most real-world applications. In this work, we present a deep multi-class data description, termed as Deep-MCDD, which is effective to detect out-of-distribution (OOD) samples as well as classify in-distribution (ID) samples. Unlike the softmax classifier that only focuses on the linear decision boundary partitioning its latent space into multiple regions, our Deep-MCDD aims to find a spherical decision boundary for each class which determines whether a test sample belongs to the class or not. By integrating the concept of Gaussian discriminant analysis into deep neural networks, we propose a deep learning objective to learn class-conditional distributions that are explicitly modeled as separable Gaussian distributions. Thereby, we can define the confidence score by the distance of a test sample from each class-conditional distribution, and utilize it for identifying OOD samples. Our empirical evaluation on multi-class tabular and image datasets demonstrates that Deep-MCDD achieves the best performances in distinguishing OOD samples while showing the classification accuracy as high as the other competitors.
Abstract:Recent recommender systems have started to employ knowledge distillation, which is a model compression technique distilling knowledge from a cumbersome model (teacher) to a compact model (student), to reduce inference latency while maintaining performance. The state-of-the-art methods have only focused on making the student model accurately imitate the predictions of the teacher model. They have a limitation in that the prediction results incompletely reveal the teacher's knowledge. In this paper, we propose a novel knowledge distillation framework for recommender system, called DE-RRD, which enables the student model to learn from the latent knowledge encoded in the teacher model as well as from the teacher's predictions. Concretely, DE-RRD consists of two methods: 1) Distillation Experts (DE) that directly transfers the latent knowledge from the teacher model. DE exploits "experts" and a novel expert selection strategy for effectively distilling the vast teacher's knowledge to the student with limited capacity. 2) Relaxed Ranking Distillation (RRD) that transfers the knowledge revealed from the teacher's prediction with consideration of the relaxed ranking orders among items. Our extensive experiments show that DE-RRD outperforms the state-of-the-art competitors and achieves comparable or even better performance to that of the teacher model with faster inference time.
Abstract:Multiple Instance Learning (MIL) involves predicting a single label for a bag of instances, given positive or negative labels at bag-level, without accessing to label for each instance in the training phase. Since a positive bag contains both positive and negative instances, it is often required to detect positive instances (key instances) when a set of instances is categorized as a positive bag. The attention-based deep MIL model is a recent advance in both bag-level classification and key instance detection (KID). However, if the positive and negative instances in a positive bag are not clearly distinguishable, the attention-based deep MIL model has limited KID performance as the attention scores are skewed to few positive instances. In this paper, we present a method to improve the attention-based deep MIL model in the task of KID. The main idea is to use the neural network inversion to find which instances made contribution to the bag-level prediction produced by the trained MIL model. Moreover, we incorporate a sparseness constraint into the neural network inversion, leading to the sparse network inversion which is solved by the proximal gradient method. Numerical experiments on an MNIST-based image MIL dataset and two real-world histopathology datasets verify the validity of our method, demonstrating the KID performance is significantly improved while the performance of bag-level prediction is maintained.