Abstract:The fusion of Synthetic Aperture Radar (SAR) and RGB imagery for land cover classification remains challenging due to modality heterogeneity and the underutilization of spectral complementarity. Existing methods often fail to decouple shared structural features from modality-specific radiometric attributes, leading to feature conflicts and information loss. To address this issue, we propose Phase-Amplitude Decoupling (PAD), a frequency-aware framework that separates phase (modality-shared) and amplitude (modality-specific) components in the Fourier domain. Specifically, PAD consists of two key components: 1) Phase Spectrum Correction (PSC), which aligns cross-modal phase features through convolution-guided scaling to enhance geometric consistency, and 2) Amplitude Spectrum Fusion (ASF), which dynamically integrates high-frequency details and low-frequency structures using frequency-adaptive multilayer perceptrons. This approach leverages SAR's sensitivity to morphological features and RGB's spectral richness. Extensive experiments on WHU-OPT-SAR and DDHR-SK datasets demonstrate state-of-the-art performance. Our work establishes a new paradigm for physics-aware multi-modal fusion in remote sensing. The code will be available at https://github.com/RanFeng2/PAD.
Abstract:Ocean forecasting is crucial for both scientific research and societal benefits. Currently, the most accurate forecasting systems are global ocean forecasting systems (GOFSs), which represent the ocean state variables (OSVs) as discrete grids and solve partial differential equations (PDEs) governing the transitions of oceanic state variables using numerical methods. However, GOFSs processes are computationally expensive and prone to cumulative errors. Recently, large artificial intelligence (AI)-based models significantly boosted forecasting speed and accuracy. Unfortunately, building a large AI ocean forecasting system that can be considered cross-spatiotemporal and air-sea coupled forecasts remains a significant challenge. Here, we introduce LangYa, a cross-spatiotemporal and air-sea coupled ocean forecasting system. Results demonstrate that the time embedding module in LangYa enables a single model to make forecasts with lead times ranging from 1 to 7 days. The air-sea coupled module effectively simulates air-sea interactions. The ocean self-attention module improves network stability and accelerates convergence during training, and the adaptive thermocline loss function improves the accuracy of thermocline forecasting. Compared to existing numerical and AI-based ocean forecasting systems, LangYa uses 27 years of global ocean data from the Global Ocean Reanalysis and Simulation version 12 (GLORYS12) for training and achieves more reliable deterministic forecasting results for OSVs. LangYa forecasting system provides global ocean researchers with access to a powerful software tool for accurate ocean forecasting and opens a new paradigm for ocean science.