Abstract:Active learning (AL) aims to optimize model training and reduce annotation costs by selecting the most informative samples for labeling. Typically, AL methods rely on the empirical distribution of labeled data to define the decision boundary and perform uncertainty or diversity estimation, subsequently identifying potential high-quality samples. In few-shot scenarios, the empirical distribution often diverges significantly from the target distribution, causing the decision boundary to shift away from its optimal position. However, existing methods overlook the role of unlabeled samples in enhancing the empirical distribution to better align with the target distribution, resulting in a suboptimal decision boundary and the selection of samples that inadequately represent the target distribution. To address this, we propose a hybrid AL framework, termed \textbf{PromptAL} (Sample-Aware Dynamic Soft \textbf{Prompts} for Few-Shot \textbf{A}ctive \textbf{L}earning). This framework accounts for the contribution of each unlabeled data point in aligning the current empirical distribution with the target distribution, thereby optimizing the decision boundary. Specifically, PromptAL first leverages unlabeled data to construct sample-aware dynamic soft prompts that adjust the model's predictive distribution and decision boundary. Subsequently, based on the adjusted decision boundary, it integrates uncertainty estimation with both global and local diversity to select high-quality samples that more accurately represent the target distribution. Experimental results on six in-domain and three out-of-domain datasets show that PromptAL achieves superior performance over nine baselines. Our codebase is openly accessible.
Abstract:Deep reinforcement learning (DRL) for fluidic pinball, three individually rotating cylinders in the uniform flow arranged in an equilaterally triangular configuration, can learn the efficient flow control strategies due to the validity of self-learning and data-driven state estimation for complex fluid dynamic problems. In this work, we present a DRL-based real-time feedback strategy to control the hydrodynamic force on fluidic pinball, i.e., force extremum and tracking, from cylinders' rotation. By adequately designing reward functions and encoding historical observations, and after automatic learning of thousands of iterations, the DRL-based control was shown to make reasonable and valid control decisions in nonparametric control parameter space, which is comparable to and even better than the optimal policy found through lengthy brute-force searching. Subsequently, one of these results was analyzed by a machine learning model that enabled us to shed light on the basis of decision-making and physical mechanisms of the force tracking process. The finding from this work can control hydrodynamic force on the operation of fluidic pinball system and potentially pave the way for exploring efficient active flow control strategies in other complex fluid dynamic problems.