Abstract:Fine-tuning for large language models (LLMs) typically requires substantial amounts of high-quality supervised data, which is both costly and labor-intensive to acquire. While synthetic data generation has emerged as a promising solution, existing approaches frequently suffer from factual inaccuracies, insufficient long-tail coverage, simplistic knowledge structures, and homogenized outputs. To address these challenges, we introduce GraphGen, a knowledge graph-guided framework designed for three key question-answering (QA) scenarios: atomic QA, aggregated QA, and multi-hop QA. It begins by constructing a fine-grained knowledge graph from the source text. It then identifies knowledge gaps in LLMs using the expected calibration error metric, prioritizing the generation of QA pairs that target high-value, long-tail knowledge. Furthermore, GraphGen incorporates multi-hop neighborhood sampling to capture complex relational information and employs style-controlled generation to diversify the resulting QA data. Experimental results on knowledge-intensive tasks under closed-book settings demonstrate that GraphGen outperforms conventional synthetic data methods, offering a more reliable and comprehensive solution to the data scarcity challenge in supervised fine-tuning. The code and data are publicly available at https://github.com/open-sciencelab/GraphGen.
Abstract:Seed science is essential for modern agriculture, directly influencing crop yields and global food security. However, challenges such as interdisciplinary complexity and high costs with limited returns hinder progress, leading to a shortage of experts and insufficient technological support. While large language models (LLMs) have shown promise across various fields, their application in seed science remains limited due to the scarcity of digital resources, complex gene-trait relationships, and the lack of standardized benchmarks. To address this gap, we introduce SeedBench -- the first multi-task benchmark specifically designed for seed science. Developed in collaboration with domain experts, SeedBench focuses on seed breeding and simulates key aspects of modern breeding processes. We conduct a comprehensive evaluation of 26 leading LLMs, encompassing proprietary, open-source, and domain-specific fine-tuned models. Our findings not only highlight the substantial gaps between the power of LLMs and the real-world seed science problems, but also make a foundational step for research on LLMs for seed design.
Abstract:Large Language Models (LLMs) perform well on familiar queries but struggle with specialized or emerging topics. Graph-based Retrieval-Augmented Generation (GraphRAG) addresses this by structuring domain knowledge as a graph for dynamic retrieval. However, existing pipelines involve complex engineering workflows, making it difficult to isolate the impact of individual components. Evaluating retrieval effectiveness is also challenging due to dataset overlap with LLM pretraining data. In this work, we introduce HuixiangDou2, a robustly optimized GraphRAG framework. Specifically, we leverage the effectiveness of dual-level retrieval and optimize its performance in a 32k context for maximum precision, and compare logic-based retrieval and dual-level retrieval to enhance overall functionality. Our implementation includes comparative experiments on a test set, where Qwen2.5-7B-Instruct initially underperformed. With our approach, the score improved significantly from 60 to 74.5, as illustrated in the Figure. Experiments on domain-specific datasets reveal that dual-level retrieval enhances fuzzy matching, while logic-form retrieval improves structured reasoning. Furthermore, we propose a multi-stage verification mechanism to improve retrieval robustness without increasing computational cost. Empirical results show significant accuracy gains over baselines, highlighting the importance of adaptive retrieval. To support research and adoption, we release HuixiangDou2 as an open-source resource https://github.com/tpoisonooo/huixiangdou2.
Abstract:How to eliminate pronominal reference in group chats? In this work, we have preprocessed 58k authentic chat data and manually annotated 2.3k questions. The reliability of this annotation was confirmed by the scaling law. After this, we conducted fine-tuning on Qwen models, ranging from 0.5B to 32B parameters. The optimal version improved 29.07 in F1 score. This confirms the viability of fine-tuning Large Language Model (LLM) for downstream Natural Language Processing (NLP) tasks. Our contributions are: 1) Created Supervised Fine-Tuning (SFT) training data in alpaca format, along with a set of Low-Rank Adaptation (LoRA) weights, and 2) Developed a method for acquiring high-quality data leveraging scaling law principle. The script, raw data with alpaca format and experiments track are open-sourced on Github https://github.com/InternLM/HuixiangDou/tree/main/web/tools, HuggingFace https://huggingface.co/tpoisonooo and WandB https://wandb.ai/tpoisonooo/huixiangdou-cr/table?nw=nwusertpoisonooo . The privacy of the data involved has been authorized by users.
Abstract:In this work, we present HuixiangDou, a technical assistant powered by Large Language Models (LLM). This system is designed to assist algorithm developers by providing insightful responses to questions related to open-source algorithm projects, such as computer vision and deep learning projects from OpenMMLab. We further explore the integration of this assistant into the group chats of instant messaging (IM) tools such as WeChat and Lark. Through several iterative improvements and trials, we have developed a sophisticated technical chat assistant capable of effectively answering users' technical questions without causing message flooding. This paper's contributions include: 1) Designing an algorithm pipeline specifically for group chat scenarios; 2) Verifying the reliable performance of text2vec in task rejection; 3) Identifying three critical requirements for LLMs in technical-assistant-like products, namely scoring ability, In-Context Learning (ICL), and Long Context. We have made the software and source code available at https://github.com/internlm/huixiangdou to aid in future research and application. HuixiangDou is applicable to any group chat within IM tools.