Abstract:Precisely controlling the length of generated text is a common requirement in real-world applications. However, despite significant advancements in following human instructions, Large Language Models (LLMs) still struggle with this task. In this work, we demonstrate that LLMs often fail to accurately measure their response lengths, leading to poor adherence to length constraints. To address this issue, we propose a novel length regulation approach that incorporates dynamic length feedback during generation, enabling adaptive adjustments to meet target lengths. Experiments on summarization and biography tasks show our training-free approach significantly improves precision in achieving target token, word, or sentence counts without compromising quality. Additionally, we demonstrate that further supervised fine-tuning allows our method to generalize effectively to broader text-generation tasks.
Abstract:In recent years, multi-modal machine translation has attracted significant interest in both academia and industry due to its superior performance. It takes both textual and visual modalities as inputs, leveraging visual context to tackle the ambiguities in source texts. In this paper, we begin by offering an exhaustive overview of 99 prior works, comprehensively summarizing representative studies from the perspectives of dominant models, datasets, and evaluation metrics. Afterwards, we analyze the impact of various factors on model performance and finally discuss the possible research directions for this task in the future. Over time, multi-modal machine translation has developed more types to meet diverse needs. Unlike previous surveys confined to the early stage of multi-modal machine translation, our survey thoroughly concludes these emerging types from different aspects, so as to provide researchers with a better understanding of its current state.