Abstract:Federated learning can enable remote workers to collaboratively train a shared machine learning model while allowing training data to be kept locally. In the use case of wireless mobile devices, the communication overhead is a critical bottleneck due to limited power and bandwidth. Prior work has utilized various data compression tools such as quantization and sparsification to reduce the overhead. In this paper, we propose a predictive coding based communication scheme for federated learning. The scheme has shared prediction functions among all devices and allows each worker to transmit a compressed residual vector derived from the reference. In each communication round, we select the predictor and quantizer based on the rate-distortion cost, and further reduce the redundancy with entropy coding. Extensive simulations reveal that the communication cost can be reduced up to 99% with even better learning performance when compared with other baseline methods.
Abstract:Adversarial training has been shown as an effective approach to improve the robustness of image classifiers against white-box attacks. However, its effectiveness against black-box attacks is more nuanced. In this work, we demonstrate that some geometric consequences of adversarial training on the decision boundary of deep networks give an edge to certain types of black-box attacks. In particular, we define a metric called robustness gain to show that while adversarial training is an effective method to dramatically improve the robustness in white-box scenarios, it may not provide such a good robustness gain against the more realistic decision-based black-box attacks. Moreover, we show that even the minimal perturbation white-box attacks can converge faster against adversarially-trained neural networks compared to the regular ones.
Abstract:The concept of drone corridors is recently getting more attention to enable connected, safe, and secure flight zones in the national airspace. To support beyond visual line of sight (BVLOS) operations of aerial vehicles in a drone corridor, cellular base stations (BSs) serve as a convenient infrastructure, since such BSs are widely deployed to provide seamless wireless coverage. However, antennas in the existing cellular networks are down-tilted to optimally serve their ground users, which results in coverage holes if they are also used to serve drones. In this letter, we consider the use of additional uptilted antennas at cellular BSs and optimize the uptilt angle to minimize outage probability for a given drone corridor. Our numerical results show how the beamwidth and the maximum drone corridor height affect the optimal value of the antenna uptilt angle.
Abstract:Supporting reliable and seamless wireless connectivity for unmanned aerial vehicles (UAVs) has recently become a critical requirement to enable various different use cases of UAVs. Due to their widespread deployment footprint, cellular networks can support beyond visual line of sight (BVLOS) communications for UAVs. In this paper, we consider cellular connected UAVs (C-UAVs) that are served by massive multiple-input-multiple-output (MIMO) links to extend coverage range, while also improving physical layer security and authentication. We consider Rician channel and propose a novel linear precoder design for transmitting data and artificial noise (AN). We derive the closed-form expression of the ergodic secrecy rate of C-UAVs for both conventional and proposed precoder designs. In addition, we obtain the optimal power splitting factor that divides the power between data and AN by asymptotic analysis. Then, we apply the proposed precoder design in the fingerprint embedding authentication framework, where the goal is to minimize the probability of detection of the authentication tag at an eavesdropper. In simulation results, we show the superiority of the proposed precoder in both secrecy rate and the authentication probability considering moderate and large number of antenna massive MIMO scenarios.
Abstract:Graph neural network (GNN) is an efficient neural network model for graph data and is widely used in different fields, including wireless communications. Different from other neural network models, GNN can be implemented in a decentralized manner with information exchanges among neighbors, making it a potentially powerful tool for decentralized control in wireless communication systems. The main bottleneck, however, is wireless channel impairments that deteriorate the prediction robustness of GNN. To overcome this obstacle, we analyze and enhance the robustness of the decentralized GNN in different wireless communication systems in this paper. Specifically, using a GNN binary classifier as an example, we first develop a methodology to verify whether the predictions are robust. Then, we analyze the performance of the decentralized GNN binary classifier in both uncoded and coded wireless communication systems. To remedy imperfect wireless transmission and enhance the prediction robustness, we further propose novel retransmission mechanisms for the above two communication systems, respectively. Through simulations on the synthetic graph data, we validate our analysis, verify the effectiveness of the proposed retransmission mechanisms, and provide some insights for practical implementation.
Abstract:Modern neural networks have been successful in many regression-based tasks such as face recognition, facial landmark detection, and image generation. In this work, we investigate an intuitive but understudied characteristic of modern neural networks, namely, the nonsmoothness. The experiments using synthetic data confirm that such operations as ReLU and max pooling in modern neural networks lead to nonsmoothness. We quantify the nonsmoothness using a feature named the sum of the magnitude of peaks (SMP) and model the input-output relationships for building blocks of modern neural networks. Experimental results confirm that our model can accurately predict the statistical behaviors of the nonsmoothness as it propagates through such building blocks as the convolutional layer, the ReLU activation, and the max pooling layer. We envision that the nonsmoothness feature can potentially be used as a forensic tool for regression-based applications of neural networks.
Abstract:In this paper, we propose a novel distributed alternating direction method of multipliers (ADMM) algorithm with synergetic communication and computation, called SCCD-ADMM, to reduce the total communication and computation cost of the system. Explicitly, in the proposed algorithm, each node interacts with only part of its neighboring nodes, the number of which is progressively determined according to a heuristic searching procedure, which takes into account both the predicted convergence rate and the communication and computation costs at each iteration, resulting in a trade-off between communication and computation. Then the node chooses its neighboring nodes according to an importance sampling distribution derived theoretically to minimize the variance with the latest information it locally stores. Finally, the node updates its local information with a new update rule which adapts to the number of communication nodes. We prove the convergence of the proposed algorithm and provide an upper bound of the convergence variance brought by randomness. Extensive simulations validate the excellent performances of the proposed algorithm in terms of convergence rate and variance, the overall communication and computation cost, the impact of network topology as well as the time for evaluation, in comparison with the traditional counterparts.
Abstract:The combinatorial auction (CA) is an efficient mechanism for resource allocation in different fields, including cloud computing. It can obtain high economic efficiency and user flexibility by allowing bidders to submit bids for combinations of different items instead of only for individual items. However, the problem of allocating items among the bidders to maximize the auctioneers" revenue, i.e., the winner determination problem (WDP), is NP-complete to solve and inapproximable. Existing works for WDPs are generally based on mathematical optimization techniques and most of them focus on the single-unit WDP, where each item only has one unit. On the contrary, few works consider the multi-unit WDP in which each item may have multiple units. Given that the multi-unit WDP is more complicated but prevalent in cloud computing, we propose leveraging machine learning (ML) techniques to develop a novel low-complexity algorithm for solving this problem with negligible revenue loss. Specifically, we model the multi-unit WDP as an augmented bipartite bid-item graph and use a graph neural network (GNN) with half-convolution operations to learn the probability of each bid belonging to the optimal allocation. To improve the sample generation efficiency and decrease the number of needed labeled instances, we propose two different sample generation processes. We also develop two novel graph-based post-processing algorithms to transform the outputs of the GNN into feasible solutions. Through simulations on both synthetic instances and a specific virtual machine (VM) allocation problem in a cloud computing platform, we validate that our proposed method can approach optimal performance with low complexity and has good generalization ability in terms of problem size and user-type distribution.
Abstract:One of the popular methods for distributed machine learning (ML) is federated learning, in which devices train local models based on their datasets, which are in turn aggregated periodically by a server. In large-scale fog networks, the "star" learning topology of federated learning poses several challenges in terms of resource utilization. We develop multi-stage hybrid model training (MH-MT), a novel learning methodology for distributed ML in these scenarios. Leveraging the hierarchical structure of fog systems, MH-MT combines multi-stage parameter relaying with distributed consensus formation among devices in a hybrid learning paradigm across network layers. We theoretically derive the convergence bound of MH-MT with respect to the network topology, ML model, and algorithm parameters such as the rounds of consensus employed in different clusters of devices. We obtain a set of policies for the number of consensus rounds at different clusters to guarantee either a finite optimality gap or convergence to the global optimum. Subsequently, we develop an adaptive distributed control algorithm for MH-MT to tune the number of consensus rounds at each cluster of local devices over time to meet convergence criteria. Our numerical experiments validate the performance of MH-MT in terms of convergence speed and resource utilization.
Abstract:Contemporary network architectures are pushing computing tasks from the cloud towards the network edge, leveraging the increased processing capabilities of edge devices to meet rising user demands. Of particular importance are machine learning (ML) tasks, which are becoming ubiquitous in networked applications ranging from content recommendation systems to intelligent vehicular communications. Federated learning has emerged recently as a technique for training ML models by leveraging processing capabilities across the nodes that collect the data. There are several challenges with employing federated learning at the edge, however, due to the significant heterogeneity in compute and communication capabilities that exist across devices. To address this, we advocate a new learning paradigm called {fog learning which will intelligently distribute ML model training across the fog, the continuum of nodes from edge devices to cloud servers. Fog learning is inherently a multi-stage learning framework that breaks down the aggregations of heterogeneous local models across several layers and can leverage data offloading within each layer. Its hybrid learning paradigm transforms star network topologies used for parameter transfers in federated learning to more distributed topologies. We also discuss several open research directions for fog learning.