Abstract:Generative models can now produce photorealistic imagery, yet they still struggle with the long, multi-goal prompts that professional designers issue. To expose this gap and better evaluate models' performance in real-world settings, we introduce Long Goal Bench (LGBench), a 2,000-task suite (1,000 T2I and 1,000 I2I) whose average instruction contains 18 to 22 tightly coupled goals spanning global layout, local object placement, typography, and logo fidelity. We find that even state-of-the-art models satisfy fewer than 72 percent of the goals and routinely miss localized edits, confirming the brittleness of current pipelines. To address this, we present VisionDirector, a training-free vision-language supervisor that (i) extracts structured goals from long instructions, (ii) dynamically decides between one-shot generation and staged edits, (iii) runs micro-grid sampling with semantic verification and rollback after every edit, and (iv) logs goal-level rewards. We further fine-tune the planner with Group Relative Policy Optimization, yielding shorter edit trajectories (3.1 versus 4.2 steps) and stronger alignment. VisionDirector achieves new state of the art on GenEval (plus 7 percent overall) and ImgEdit (plus 0.07 absolute) while producing consistent qualitative improvements on typography, multi-object scenes, and pose editing.
Abstract:Tourism and travel planning increasingly rely on digital assistance, yet existing multimodal AI systems often lack specialized knowledge and contextual understanding of urban environments. We present TraveLLaMA, a specialized multimodal language model designed for urban scene understanding and travel assistance. Our work addresses the fundamental challenge of developing practical AI travel assistants through a novel large-scale dataset of 220k question-answer pairs. This comprehensive dataset uniquely combines 130k text QA pairs meticulously curated from authentic travel forums with GPT-enhanced responses, alongside 90k vision-language QA pairs specifically focused on map understanding and scene comprehension. Through extensive fine-tuning experiments on state-of-the-art vision-language models (LLaVA, Qwen-VL, Shikra), we demonstrate significant performance improvements ranging from 6.5\%-9.4\% in both pure text travel understanding and visual question answering tasks. Our model exhibits exceptional capabilities in providing contextual travel recommendations, interpreting map locations, and understanding place-specific imagery while offering practical information such as operating hours and visitor reviews. Comparative evaluations show TraveLLaMA significantly outperforms general-purpose models in travel-specific tasks, establishing a new benchmark for multi-modal travel assistance systems.