Abstract:Mixture-of-Experts (MoE) models face deployment challenges due to their large parameter counts and computational demands. We explore quantization for MoE models and highlight two key insights: 1) linear blocks exhibit varying quantization sensitivity, and 2) divergent expert activation frequencies create heterogeneous computational characteristics. Based on these observations, we introduce MxMoE, a mixed-precision optimization framework for MoE models that considers both algorithmic and system perspectives. MxMoE navigates the design space defined by parameter sensitivity, expert activation dynamics, and hardware resources to derive efficient mixed-precision configurations. Additionally, MxMoE automatically generates optimized mixed-precision GroupGEMM kernels, enabling parallel execution of GEMMs with different precisions. Evaluations show that MxMoE outperforms existing methods, achieving 2.4 lower Wikitext-2 perplexity than GPTQ at 2.25-bit and delivering up to 3.4x speedup over full precision, as well as up to 29.4% speedup over uniform quantization at equivalent accuracy with 5-bit weight-activation quantization. Our code is available at https://github.com/cat538/MxMoE.
Abstract:Large language models (LLMs) can now handle longer sequences of tokens, enabling complex tasks like book understanding and generating lengthy novels. However, the key-value (KV) cache required for LLMs consumes substantial memory as context length increasing, becoming the bottleneck for deployment. In this paper, we present a strategy called SKVQ, which stands for sliding-window KV cache quantization, to address the issue of extremely low bitwidth KV cache quantization. To achieve this, SKVQ rearranges the channels of the KV cache in order to improve the similarity of channels in quantization groups, and applies clipped dynamic quantization at the group level. Additionally, SKVQ ensures that the most recent window tokens in the KV cache are preserved with high precision. This helps maintain the accuracy of a small but important portion of the KV cache.SKVQ achieves high compression ratios while maintaining accuracy. Our evaluation on LLMs demonstrates that SKVQ surpasses previous quantization approaches, allowing for quantization of the KV cache to 2-bit keys and 1.5-bit values with minimal loss of accuracy. With SKVQ, it is possible to process context lengths of up to 1M on an 80GB memory GPU for a 7b model and up to 7 times faster decoding.
Abstract:Large Language Models (LLMs) face significant deployment challenges due to their substantial memory requirements and the computational demands of auto-regressive text generation process. This paper addresses these challenges by focusing on the quantization of LLMs, a technique that reduces memory consumption by converting model parameters and activations into low-bit integers. We critically analyze the existing quantization approaches, identifying their limitations in balancing the accuracy and efficiency of the quantized LLMs. To advance beyond these limitations, we propose WKVQuant, a PTQ framework especially designed for quantizing weights and the key/value (KV) cache of LLMs. Specifically, we incorporates past-only quantization to improve the computation of attention. Additionally, we introduce two-dimensional quantization strategy to handle the distribution of KV cache, along with a cross-block reconstruction regularization for parameter optimization. Experiments show that WKVQuant achieves almost comparable memory savings to weight-activation quantization, while also approaching the performance of weight-only quantization.