Abstract:As a privacy-preserving collaborative machine learning paradigm, federated learning (FL) has attracted significant interest from academia and the industry alike. To allow each data owner (a.k.a., FL clients) to train a heterogeneous and personalized local model based on its local data distribution, system resources and requirements on model structure, the field of model-heterogeneous personalized federated learning (MHPFL) has emerged. Existing MHPFL approaches either rely on the availability of a public dataset with special characteristics to facilitate knowledge transfer, incur high computation and communication costs, or face potential model leakage risks. To address these limitations, we propose a model-heterogeneous personalized Federated learning approach based on feature Extractor Sharing (pFedES). It incorporates a small homogeneous feature extractor into each client's heterogeneous local model. Clients train them via the proposed iterative learning method to enable the exchange of global generalized knowledge and local personalized knowledge. The small local homogeneous extractors produced after local training are uploaded to the FL server and for aggregation to facilitate easy knowledge sharing among clients. We theoretically prove that pFedES can converge over wall-to-wall time. Extensive experiments on two real-world datasets against six state-of-the-art methods demonstrate that pFedES builds the most accurate model, while incurring low communication and computation costs. Compared with the best-performing baseline, it achieves 1.61% higher test accuracy, while reducing communication and computation costs by 99.6% and 82.9%, respectively.
Abstract:Federated learning (FL) is an emerging machine learning paradigm in which a central server coordinates multiple participants (a.k.a. FL clients) to train a model collaboratively on decentralized data with privacy protection. This paradigm constrains that all clients have to train models with the same structures (homogeneous). In practice, FL often faces statistical heterogeneity, system heterogeneity and model heterogeneity challenges. These challenging issues inspire the field of Model-Heterogeneous Personalized Federated Learning (MHPFL) which aims to train a personalized and heterogeneous local model for each FL client. Existing MHPFL approaches cannot achieve satisfactory model performance, acceptable computational overhead and efficient communication simultaneously. To bridge this gap, we propose a novel computation- and communication-efficient model-heterogeneous personalized Federated learning framework based on LoRA tuning (FedLoRA). It is designed to incorporate a homogeneous small adapter for each client's heterogeneous local model. Both models are trained following the proposed iterative training for global-local knowledge exchange. The homogeneous small local adapters are sent to the FL server to be aggregated into a global adapter. In this way, FL clients can train heterogeneous local models without incurring high computation and communication costs. We theoretically prove the non-convex convergence rate of FedLoRA. Extensive experiments on two real-world datasets demonstrate that FedLoRA outperforms six state-of-the-art baselines, beating the best approach by 1.35% in terms of test accuracy, 11.81 times computation overhead reduction and 7.41 times communication cost saving.
Abstract:Electrocardiogram (ECG) is an essential signal in monitoring human heart activities. Researchers have achieved promising results in leveraging ECGs in clinical applications with deep learning models. However, the mainstream deep learning approaches usually neglect the periodic and formative attribute of the ECG heartbeat waveform. In this work, we propose a novel ECG-Segment based Learning (ECG-SL) framework to explicitly model the periodic nature of ECG signals. More specifically, ECG signals are first split into heartbeat segments, and then structural features are extracted from each of the segments. Based on the structural features, a temporal model is designed to learn the temporal information for various clinical tasks. Further, due to the fact that massive ECG signals are available but the labeled data are very limited, we also explore self-supervised learning strategy to pre-train the models, resulting significant improvement for downstream tasks. The proposed method outperforms the baseline model and shows competitive performances compared with task-specific methods in three clinical applications: cardiac condition diagnosis, sleep apnea detection, and arrhythmia classification. Further, we find that the ECG-SL tends to focus more on each heartbeat's peak and ST range than ResNet by visualizing the saliency maps.
Abstract:The success of federated Learning (FL) depends on the quantity and quality of the data owners (DOs) as well as their motivation to join FL model training. Reputation-based FL participant selection methods have been proposed. However, they still face the challenges of the cold start problem and potential selection bias towards highly reputable DOs. Such a bias can result in lower reputation DOs being prematurely excluded from future FL training rounds, thereby reducing the diversity of training data and the generalizability of the resulting models. To address these challenges, we propose the Gradual Participant Selection scheme for Auction-based Federated Learning (GPS-AFL). Unlike existing AFL incentive mechanisms which generally assume that all DOs required for an FL task must be selected in one go, GPS-AFL gradually selects the required DOs over multiple rounds of training as more information is revealed through repeated interactions. It is designed to strike a balance between cost saving and performance enhancement, while mitigating the drawbacks of selection bias in reputation-based FL. Extensive experiments based on real-world datasets demonstrate the significant advantages of GPS-AFL, which reduces costs by 33.65% and improved total utility by 2.91%, on average compared to the best-performing state-of-the-art approach.
Abstract:Temporal graphs offer more accurate modeling of many real-world scenarios than static graphs. However, neighbor aggregation, a critical building block of graph networks, for temporal graphs, is currently straightforwardly extended from that of static graphs. It can be computationally expensive when involving all historical neighbors during such aggregation. In practice, typically only a subset of the most recent neighbors are involved. However, such subsampling leads to incomplete and biased neighbor information. To address this limitation, we propose a novel framework for temporal neighbor aggregation that uses the recurrent neural network with node-wise hidden states to integrate information from all historical neighbors for each node to acquire the complete neighbor information. We demonstrate the superior theoretical expressiveness of the proposed framework as well as its state-of-the-art performance in real-world applications. Notably, it achieves a significant +9.6% improvement on averaged precision in a real-world Ecommerce dataset over existing methods on 2-layer models.
Abstract:Image aesthetics assessment (IAA) aims to estimate the aesthetics of images. Depending on the content of an image, diverse criteria need to be selected to assess its aesthetics. Existing works utilize pre-trained vision backbones based on content knowledge to learn image aesthetics. However, training those backbones is time-consuming and suffers from attention dispersion. Inspired by learnable queries in vision-language alignment, we propose the Image Aesthetics Assessment via Learnable Queries (IAA-LQ) approach. It adapts learnable queries to extract aesthetic features from pre-trained image features obtained from a frozen image encoder. Extensive experiments on real-world data demonstrate the advantages of IAA-LQ, beating the best state-of-the-art method by 2.2% and 2.1% in terms of SRCC and PLCC, respectively.
Abstract:Reinforcement Learning with Human Feedback (RLHF) has revolutionized language modeling by aligning models with human preferences. However, the RL stage, Proximal Policy Optimization (PPO), requires over 3x the memory of Supervised Fine-Tuning (SFT), making it infeasible to use for most practitioners. To address this issue, we present a comprehensive analysis the memory usage, performance, and training time of memory-savings techniques for PPO. We introduce Hydra-RLHF by first integrating the SFT and Reward models and then dynamically turning LoRA "off" during training. Our experiments show: 1. Using LoRA during PPO reduces its memory usage to be smaller than SFT while improving alignment across four public benchmarks, and 2. Hydra-PPO reduces the latency per sample of LoRA-PPO by up to 65% while maintaining its performance. Our results demonstrate that Hydra-PPO is a simple and promising solution for enabling more widespread usage of RLHF.
Abstract:Leveraging ``chain-of-thought (CoT)'' reasoning to elicit rapid and precise responses from large language models (LLMs) is rapidly attracting research interest. A notable challenge here is how to design or select optimal prompts. The process of prompt selection relies on trial and error, involving continuous adjustments and combinations of input prompts by users based on the corresponding new responses generated from LLMs. Furthermore, minimal research has been conducted to explore how LLMs employ the mathematical problem-solving capabilities learned from user interactions to address issues in narrative writing. To improve interpretability and explore the balance principle between generality and personalization under a multi-domain CoT prompt selection scenario, we propose the Federated Logic rule learning approach (FedLogic). We introduce a theoretical formalization and interactive emulation of the multi-domain CoT prompt selection dilemma in the context of federated LLMs. We cast the problem of joint probability modeling as a bilevel program, where the CoT prompt selection intricacy can be likened to a fuzzy score-based rule selection with the LLMs function as rule generators. FedLogic solves this problem through variational expectation maximization (V-EM). In addition, we incorporate two KL-divergence constraints within this probabilistic modeling framework to surmount the intricacies of managing extensive search spaces and accomplishing cross-domain personalization of CoTs. To the best of our knowledge, FedLogic is the first interpretable and principled federated multi-domain CoT prompt selection approach for LLMs.
Abstract:Federated learning (FL) is an emerging approach for training machine learning models collaboratively while preserving data privacy. The need for privacy protection makes it difficult for FL models to achieve global transparency and explainability. To address this limitation, we incorporate logic-based explanations into FL by proposing the Logical Reasoning-based eXplainable Federated Learning (LR-XFL) approach. Under LR-XFL, FL clients create local logic rules based on their local data and send them, along with model updates, to the FL server. The FL server connects the local logic rules through a proper logical connector that is derived based on properties of client data, without requiring access to the raw data. In addition, the server also aggregates the local model updates with weight values determined by the quality of the clients' local data as reflected by their uploaded logic rules. The results show that LR-XFL outperforms the most relevant baseline by 1.19%, 5.81% and 5.41% in terms of classification accuracy, rule accuracy and rule fidelity, respectively. The explicit rule evaluation and expression under LR-XFL enable human experts to validate and correct the rules on the server side, hence improving the global FL model's robustness to errors. It has the potential to enhance the transparency of FL models for areas like healthcare and finance where both data privacy and explainability are important.
Abstract:Federated learning (FL) addresses data privacy concerns by enabling collaborative training of AI models across distributed data owners. Wide adoption of FL faces the fundamental challenges of data heterogeneity and the large scale of data owners involved. In this paper, we investigate the prospect of Transformer-based FL models for achieving generalization and personalization in this setting. We conduct extensive comparative experiments involving FL with Transformers, ResNet, and personalized ResNet-based FL approaches under various scenarios. These experiments consider varying numbers of data owners to demonstrate Transformers' advantages over deep neural networks in large-scale heterogeneous FL tasks. In addition, we analyze the superior performance of Transformers by comparing the Centered Kernel Alignment (CKA) representation similarity across different layers and FL models to gain insight into the reasons behind their promising capabilities.