University of Maryland Baltimore County
Abstract:Object detection is a challenging task in visual understanding domain, and even more so if the supervision is to be weak. Recently, few efforts to handle the task without expensive human annotations is established by promising deep neural network. A new architecture of cascaded networks is proposed to learn a convolutional neural network (CNN) under such conditions. We introduce two such architectures, with either two cascade stages or three which are trained in an end-to-end pipeline. The first stage of both architectures extracts best candidate of class specific region proposals by training a fully convolutional network. In the case of the three stage architecture, the middle stage provides object segmentation, using the output of the activation maps of first stage. The final stage of both architectures is a part of a convolutional neural network that performs multiple instance learning on proposals extracted in the previous stage(s). Our experiments on the PASCAL VOC 2007, 2010, 2012 and large scale object datasets, ILSVRC 2013, 2014 datasets show improvements in the areas of weakly-supervised object detection, classification and localization.
Abstract:People can recognize scenes across many different modalities beyond natural images. In this paper, we investigate how to learn cross-modal scene representations that transfer across modalities. To study this problem, we introduce a new cross-modal scene dataset. While convolutional neural networks can categorize scenes well, they also learn an intermediate representation not aligned across modalities, which is undesirable for cross-modal transfer applications. We present methods to regularize cross-modal convolutional neural networks so that they have a shared representation that is agnostic of the modality. Our experiments suggest that our scene representation can help transfer representations across modalities for retrieval. Moreover, our visualizations suggest that units emerge in the shared representation that tend to activate on consistent concepts independently of the modality.
Abstract:We capitalize on large amounts of unlabeled video in order to learn a model of scene dynamics for both video recognition tasks (e.g. action classification) and video generation tasks (e.g. future prediction). We propose a generative adversarial network for video with a spatio-temporal convolutional architecture that untangles the scene's foreground from the background. Experiments suggest this model can generate tiny videos up to a second at full frame rate better than simple baselines, and we show its utility at predicting plausible futures of static images. Moreover, experiments and visualizations show the model internally learns useful features for recognizing actions with minimal supervision, suggesting scene dynamics are a promising signal for representation learning. We believe generative video models can impact many applications in video understanding and simulation.
Abstract:Multi-scale deep CNNs have been used successfully for problems mapping each pixel to a label, such as depth estimation and semantic segmentation. It has also been shown that such architectures are reusable and can be used for multiple tasks. These networks are typically trained independently for each task by varying the output layer(s) and training objective. In this work we present a new model for simultaneous depth estimation and semantic segmentation from a single RGB image. Our approach demonstrates the feasibility of training parts of the model for each task and then fine tuning the full, combined model on both tasks simultaneously using a single loss function. Furthermore we couple the deep CNN with fully connected CRF, which captures the contextual relationships and interactions between the semantic and depth cues improving the accuracy of the final results. The proposed model is trained and evaluated on NYUDepth V2 dataset outperforming the state of the art methods on semantic segmentation and achieving comparable results on the task of depth estimation.
Abstract:The recognition of human actions and the determination of human attributes are two tasks that call for fine-grained classification. Indeed, often rather small and inconspicuous objects and features have to be detected to tell their classes apart. In order to deal with this challenge, we propose a novel convolutional neural network that mines mid-level image patches that are sufficiently dedicated to resolve the corresponding subtleties. In particular, we train a newly de- signed CNN (DeepPattern) that learns discriminative patch groups. There are two innovative aspects to this. On the one hand we pay attention to contextual information in an origi- nal fashion. On the other hand, we let an iteration of feature learning and patch clustering purify the set of dedicated patches that we use. We validate our method for action clas- sification on two challenging datasets: PASCAL VOC 2012 Action and Stanford 40 Actions, and for attribute recogni- tion we use the Berkeley Attributes of People dataset. Our discriminative mid-level mining CNN obtains state-of-the- art results on these datasets, without a need for annotations about parts and poses.
Abstract:People can recognize scenes across many different modalities beyond natural images. In this paper, we investigate how to learn cross-modal scene representations that transfer across modalities. To study this problem, we introduce a new cross-modal scene dataset. While convolutional neural networks can categorize cross-modal scenes well, they also learn an intermediate representation not aligned across modalities, which is undesirable for cross-modal transfer applications. We present methods to regularize cross-modal convolutional neural networks so that they have a shared representation that is agnostic of the modality. Our experiments suggest that our scene representation can help transfer representations across modalities for retrieval. Moreover, our visualizations suggest that units emerge in the shared representation that tend to activate on consistent concepts independently of the modality.
Abstract:Although the human visual system can recognize many concepts under challenging conditions, it still has some biases. In this paper, we investigate whether we can extract these biases and transfer them into a machine recognition system. We introduce a novel method that, inspired by well-known tools in human psychophysics, estimates the biases that the human visual system might use for recognition, but in computer vision feature spaces. Our experiments are surprising, and suggest that classifiers from the human visual system can be transferred into a machine with some success. Since these classifiers seem to capture favorable biases in the human visual system, we further present an SVM formulation that constrains the orientation of the SVM hyperplane to agree with the bias from human visual system. Our results suggest that transferring this human bias into machines may help object recognition systems generalize across datasets and perform better when very little training data is available.
Abstract:We introduce algorithms to visualize feature spaces used by object detectors. Our method works by inverting a visual feature back to multiple natural images. We found that these visualizations allow us to analyze object detection systems in new ways and gain new insight into the detector's failures. For example, when we visualize the features for high scoring false alarms, we discovered that, although they are clearly wrong in image space, they do look deceptively similar to true positives in feature space. This result suggests that many of these false alarms are caused by our choice of feature space, and supports that creating a better learning algorithm or building bigger datasets is unlikely to correct these errors. By visualizing feature spaces, we can gain a more intuitive understanding of recognition systems.
Abstract:When learning a new concept, not all training examples may prove equally useful for training: some may have higher or lower training value than others. The goal of this paper is to bring to the attention of the vision community the following considerations: (1) some examples are better than others for training detectors or classifiers, and (2) in the presence of better examples, some examples may negatively impact performance and removing them may be beneficial. In this paper, we propose an approach for measuring the training value of an example, and use it for ranking and greedily sorting examples. We test our methods on different vision tasks, models, datasets and classifiers. Our experiments show that the performance of current state-of-the-art detectors and classifiers can be improved when training on a subset, rather than the whole training set.