Alert button
Picture for Gur-Eyal Sela

Gur-Eyal Sela

Alert button

Context-Aware Streaming Perception in Dynamic Environments

Aug 16, 2022
Gur-Eyal Sela, Ionel Gog, Justin Wong, Kumar Krishna Agrawal, Xiangxi Mo, Sukrit Kalra, Peter Schafhalter, Eric Leong, Xin Wang, Bharathan Balaji, Joseph Gonzalez, Ion Stoica

Figure 1 for Context-Aware Streaming Perception in Dynamic Environments
Figure 2 for Context-Aware Streaming Perception in Dynamic Environments
Figure 3 for Context-Aware Streaming Perception in Dynamic Environments
Figure 4 for Context-Aware Streaming Perception in Dynamic Environments

Efficient vision works maximize accuracy under a latency budget. These works evaluate accuracy offline, one image at a time. However, real-time vision applications like autonomous driving operate in streaming settings, where ground truth changes between inference start and finish. This results in a significant accuracy drop. Therefore, a recent work proposed to maximize accuracy in streaming settings on average. In this paper, we propose to maximize streaming accuracy for every environment context. We posit that scenario difficulty influences the initial (offline) accuracy difference, while obstacle displacement in the scene affects the subsequent accuracy degradation. Our method, Octopus, uses these scenario properties to select configurations that maximize streaming accuracy at test time. Our method improves tracking performance (S-MOTA) by 7.4% over the conventional static approach. Further, performance improvement using our method comes in addition to, and not instead of, advances in offline accuracy.

* 26 pages, 10 figures, to be published in ECCV 2022 
Viaarxiv icon

Online Learning Demands in Max-min Fairness

Dec 15, 2020
Kirthevasan Kandasamy, Gur-Eyal Sela, Joseph E Gonzalez, Michael I Jordan, Ion Stoica

Figure 1 for Online Learning Demands in Max-min Fairness
Figure 2 for Online Learning Demands in Max-min Fairness
Figure 3 for Online Learning Demands in Max-min Fairness
Figure 4 for Online Learning Demands in Max-min Fairness

We describe mechanisms for the allocation of a scarce resource among multiple users in a way that is efficient, fair, and strategy-proof, but when users do not know their resource requirements. The mechanism is repeated for multiple rounds and a user's requirements can change on each round. At the end of each round, users provide feedback about the allocation they received, enabling the mechanism to learn user preferences over time. Such situations are common in the shared usage of a compute cluster among many users in an organisation, where all teams may not precisely know the amount of resources needed to execute their jobs. By understating their requirements, users will receive less than they need and consequently not achieve their goals. By overstating them, they may siphon away precious resources that could be useful to others in the organisation. We formalise this task of online learning in fair division via notions of efficiency, fairness, and strategy-proofness applicable to this setting, and study this problem under three types of feedback: when the users' observations are deterministic, when they are stochastic and follow a parametric model, and when they are stochastic and nonparametric. We derive mechanisms inspired by the classical max-min fairness procedure that achieve these requisites, and quantify the extent to which they are achieved via asymptotic rates. We corroborate these insights with an experimental evaluation on synthetic problems and a web-serving task.

Viaarxiv icon