Abstract:While modern segmentation models often prioritize performance over practicality, we advocate a design philosophy prioritizing simplicity and efficiency, and attempted high performance segmentation model design. This paper presents SimpleUNet, a scalable ultra-lightweight medical image segmentation model with three key innovations: (1) A partial feature selection mechanism in skip connections for redundancy reduction while enhancing segmentation performance; (2) A fixed-width architecture that prevents exponential parameter growth across network stages; (3) An adaptive feature fusion module achieving enhanced representation with minimal computational overhead. With a record-breaking 16 KB parameter configuration, SimpleUNet outperforms LBUNet and other lightweight benchmarks across multiple public datasets. The 0.67 MB variant achieves superior efficiency (8.60 GFLOPs) and accuracy, attaining a mean DSC/IoU of 85.76%/75.60% on multi-center breast lesion datasets, surpassing both U-Net and TransUNet. Evaluations on skin lesion datasets (ISIC 2017/2018: mDice 84.86%/88.77%) and endoscopic polyp segmentation (KVASIR-SEG: 86.46%/76.48% mDice/mIoU) confirm consistent dominance over state-of-the-art models. This work demonstrates that extreme model compression need not compromise performance, providing new insights for efficient and accurate medical image segmentation. Codes can be found at https://github.com/Frankyu5666666/SimpleUNet.
Abstract:ResNet has been widely used in image classification tasks due to its ability to model the residual dependence of constant mappings for linear computation. However, the ResNet method adopts a unidirectional transfer of features and lacks an effective method to correlate contextual information, which is not effective in classifying fetal ultrasound images in the classification task, and fetal ultrasound images have problems such as low contrast, high similarity, and high noise. Therefore, we propose a bilateral multi-scale information fusion network-based FPDANet to address the above challenges. Specifically, we design the positional attention mechanism (DAN) module, which utilizes the similarity of features to establish the dependency of different spatial positional features and enhance the feature representation. In addition, we design a bilateral multi-scale (FPAN) information fusion module to capture contextual and global feature dependencies at different feature scales, thereby further improving the model representation. FPDANet classification results obtained 91.05\% and 100\% in Top-1 and Top-5 metrics, respectively, and the experimental results proved the effectiveness and robustness of FPDANet.
Abstract:Brain tumor analysis in Magnetic Resonance Imaging (MRI) is crucial for accurate diagnosis and treatment planning. However, the task remains challenging due to the complexity and variability of tumor appearances, as well as the scarcity of labeled data. Traditional approaches often address tumor segmentation and image generation separately, limiting their effectiveness in capturing the intricate relationships between healthy and pathological tissue structures. We introduce a novel promptable counterfactual diffusion model as a unified solution for brain tumor segmentation and generation in MRI. The key innovation lies in our mask-level prompting mechanism at the sampling stage, which enables guided generation and manipulation of specific healthy or unhealthy regions in MRI images. Specifically, the model's architecture allows for bidirectional inference, which can segment tumors in existing images and generate realistic tumor structures in healthy brain scans. Furthermore, we present a two-step approach for tumor generation and position transfer, showcasing the model's versatility in synthesizing realistic tumor structures. Experiments on the BRATS2021 dataset demonstrate that our method outperforms traditional counterfactual diffusion approaches, achieving a mean IoU of 0.653 and mean Dice score of 0.785 for tumor segmentation, outperforming the 0.344 and 0.475 of conventional counterfactual diffusion model. Our work contributes to improving brain tumor detection and segmentation accuracy, with potential implications for data augmentation and clinical decision support in neuro-oncology. The code is available at https://github.com/arcadelab/counterfactual_diffusion.
Abstract:In this note, we describe a battery failure detection pipeline backed up by deep learning models. We first introduce a large-scale Electric vehicle (EV) battery dataset including cleaned battery-charging data from hundreds of vehicles. We then formulate battery failure detection as an outlier detection problem, and propose a new algorithm named Dynamic-VAE based on dynamic system and variational autoencoders. We validate the performance of our proposed algorithm against several baselines on our released dataset and demonstrated the effectiveness of Dynamic-VAE.