Abstract:Extremely large-scale arrays (XL-arrays) have emerged as a promising technology to improve the spectrum efficiency and spatial resolution of future wireless systems. Different from existing works that mostly considered physical layer security (PLS) in either the far-field or near-field, we consider in this paper a new and practical scenario, where legitimate users (Bobs) are located in the far-field of a base station (BS) while eavesdroppers (Eves) are located in the near-field for intercepting confidential information at short distance, referred to as the mixed near-field and far-field PLS. Specifically, we formulate an optimization problem to maximize the sum-secrecy-rate of all Bobs by optimizing the power allocation of the BS, subject to the constraint on the total BS transmit power. To shed useful insights, we first consider a one-Bob-one-Eve system and characterize the insecure-transmission region of the Bob in closed form. Interestingly, we show that the insecure-transmission region is significantly \emph{expanded} as compared to that in conventional far-field PLS systems, due to the energy-spread effect in the mixed-field scenario. Then, we further extend the analysis to a two-Bob-one-Eve system. It is revealed that as compared to the one-Bob system, the interferences from the other Bob can be effectively used to weaken the capability of Eve for intercepting signals of target Bobs, thus leading to enhanced secrecy rates. Furthermore, we propose an efficient algorithm to obtain a high-quality solution to the formulated non-convex problem by leveraging the successive convex approximation (SCA) technique. Finally, numerical results demonstrate that our proposed algorithm achieves a higher sum-secrecy-rate than the benchmark scheme where the power allocation is designed based on the (simplified) far-field channel model.
Abstract:In this paper, we study an active IRS-aided simultaneous wireless information and power transfer (SWIPT) system. Specifically, an active IRS is deployed to assist a multi-antenna access point (AP) to convey information and energy simultaneously to multiple single-antenna information users (IUs) and energy users (EUs). Two joint transmit and reflect beamforming optimization problems are investigated with different practical objectives. The first problem maximizes the weighted sum-power harvested by the EUs subject to individual signal-to-interference-plus-noise ratio (SINR) constraints at the IUs, while the second problem maximizes the weighted sum-rate of the IUs subject to individual energy harvesting (EH) constraints at the EUs. The optimization problems are non-convex and difficult to solve optimally. To tackle these two problems, we first rigorously prove that dedicated energy beams are not required for their corresponding semidefinite relaxation (SDR) reformulations and the SDR is tight for the first problem, thus greatly simplifying the AP precoding design. Then, by capitalizing on the techniques of alternating optimization (AO), SDR, and successive convex approximation (SCA), computationally efficient algorithms are developed to obtain suboptimal solutions of the resulting optimization problems. Simulation results demonstrate that, given the same total system power budget, significant performance gains in terms of operating range of wireless power transfer (WPT), total harvested energy, as well as achievable rate can be obtained by our proposed designs over benchmark schemes (especially the one adopting a passive IRS). Moreover, it is advisable to deploy an active IRS in the proximity of the users for the effective operation of WPT/SWIPT.
Abstract:The high reflect beamforming gain of the intelligent reflecting surface (IRS) makes it appealing not only for wireless information transmission but also for wireless power transfer. In this letter, we consider an IRS-assisted wireless powered communication network, where a base station (BS) transmits energy to multiple users grouped into multiple clusters in the downlink, and the clustered users transmit information to the BS in the manner of hybrid non-orthogonal multiple access and time division multiple access in the uplink. We investigate optimizing the reflect beamforming of the IRS and the time allocation among the BS's power transfer and different user clusters' information transmission to maximize the throughput of the network, and we propose an efficient algorithm based on the block coordinate ascent, semidefinite relaxation, and sequential rank-one constraint relaxation techniques to solve the resultant problem. Simulation results have verified the effectiveness of the proposed algorithm and have shown the impact of user clustering setup on the throughput performance of the network.