Abstract:The community plays a crucial role in understanding user behavior and network characteristics in social networks. Some users can use multiple social networks at once for a variety of objectives. These users are called overlapping users who bridge different social networks. Detecting communities across multiple social networks is vital for interaction mining, information diffusion, and behavior migration analysis among networks. This paper presents a community detection method based on nonnegative matrix tri-factorization for multiple heterogeneous social networks, which formulates a common consensus matrix to represent the global fused community. Specifically, the proposed method involves creating adjacency matrices based on network structure and content similarity, followed by alignment matrices which distinguish overlapping users in different social networks. With the generated alignment matrices, the method could enhance the fusion degree of the global community by detecting overlapping user communities across networks. The effectiveness of the proposed method is evaluated with new metrics on Twitter, Instagram, and Tumblr datasets. The results of the experiments demonstrate its superior performance in terms of community quality and community fusion.
Abstract:Incremental random weight neural networks (IRWNNs) have gained attention in view of its easy implementation and fast learning. However, a significant drawback of IRWNNs is that the elationship between the hidden parameters (node)and the residual error (model performance) is difficult to be interpreted. To address the above issue, this article proposes an interpretable constructive algorithm (ICA) with geometric information constraint. First, based on the geometric relationship between the hidden parameters and the residual error, an interpretable geometric information constraint is proposed to randomly assign the hidden parameters. Meanwhile, a node pool strategy is employed to obtain hidden parameters that is more conducive to convergence from hidden parameters satisfying the proposed constraint. Furthermore, the universal approximation property of the ICA is proved. Finally, a lightweight version of ICA is presented for large-scale data modeling tasks. Experimental results on six benchmark datasets and a numerical simulation dataset demonstrate that the ICA outperforms other constructive algorithms in terms of modeling speed, model accuracy, and model network structure. Besides, two practical industrial application case are used to validate the effectiveness of ICA in practical applications.