Abstract:The rapid development of Large Language Models (LLMs) creates new opportunities for recommender systems, especially by exploiting the side information (e.g., descriptions and analyses of items) generated by these models. However, aligning this side information with collaborative information from historical interactions poses significant challenges. The inherent biases within LLMs can skew recommendations, resulting in distorted and potentially unfair user experiences. On the other hand, propensity bias causes side information to be aligned in such a way that it often tends to represent all inputs in a low-dimensional subspace, leading to a phenomenon known as dimensional collapse, which severely restricts the recommender system's ability to capture user preferences and behaviours. To address these issues, we introduce a novel framework named Counterfactual LLM Recommendation (CLLMR). Specifically, we propose a spectrum-based side information encoder that implicitly embeds structural information from historical interactions into the side information representation, thereby circumventing the risk of dimension collapse. Furthermore, our CLLMR approach explores the causal relationships inherent in LLM-based recommender systems. By leveraging counterfactual inference, we counteract the biases introduced by LLMs. Extensive experiments demonstrate that our CLLMR approach consistently enhances the performance of various recommender models.
Abstract:In recommender systems, popularity and conformity biases undermine recommender effectiveness by disproportionately favouring popular items, leading to their over-representation in recommendation lists and causing an unbalanced distribution of user-item historical data. We construct a causal graph to address both biases and describe the abstract data generation mechanism. Then, we use it as a guide to develop a novel Debiased Contrastive Learning framework for Mitigating Dual Biases, called DCLMDB. In DCLMDB, both popularity bias and conformity bias are handled in the model training process by contrastive learning to ensure that user choices and recommended items are not unduly influenced by conformity and popularity. Extensive experiments on two real-world datasets, Movielens-10M and Netflix, show that DCLMDB can effectively reduce the dual biases, as well as significantly enhance the accuracy and diversity of recommendations.
Abstract:Graph unlearning technology has become increasingly important since the advent of the `right to be forgotten' and the growing concerns about the privacy and security of artificial intelligence. Graph unlearning aims to quickly eliminate the effects of specific data on graph neural networks (GNNs). However, most existing deterministic graph unlearning frameworks follow a balanced partition-submodel training-aggregation paradigm, resulting in a lack of structural information between subgraph neighborhoods and redundant unlearning parameter calculations. To address this issue, we propose a novel Graph Structure Mapping Unlearning paradigm (GSMU) and a novel method based on it named Community-centric Graph Eraser (CGE). CGE maps community subgraphs to nodes, thereby enabling the reconstruction of a node-level unlearning operation within a reduced mapped graph. CGE makes the exponential reduction of both the amount of training data and the number of unlearning parameters. Extensive experiments conducted on five real-world datasets and three widely used GNN backbones have verified the high performance and efficiency of our CGE method, highlighting its potential in the field of graph unlearning.