Alert button
Picture for George Pavlidis

George Pavlidis

Alert button

Deep learning based black spot identification on Greek road networks

Jun 19, 2023
Ioannis Karamanlis, Alexandros Kokkalis, Vassilios Profillidis, George Botzoris, Chairi Kiourt, Vasileios Sevetlidis, George Pavlidis

Figure 1 for Deep learning based black spot identification on Greek road networks
Figure 2 for Deep learning based black spot identification on Greek road networks
Figure 3 for Deep learning based black spot identification on Greek road networks
Figure 4 for Deep learning based black spot identification on Greek road networks

Black spot identification, a spatiotemporal phenomenon, involves analyzing the geographical location and time-based occurrence of road accidents. Typically, this analysis examines specific locations on road networks during set time periods to pinpoint areas with a higher concentration of accidents, known as black spots. By evaluating these problem areas, researchers can uncover the underlying causes and reasons for increased collision rates, such as road design, traffic volume, driver behavior, weather, and infrastructure. However, challenges in identifying black spots include limited data availability, data quality, and assessing contributing factors. Additionally, evolving road design, infrastructure, and vehicle safety technology can affect black spot analysis and determination. This study focused on traffic accidents in Greek road networks to recognize black spots, utilizing data from police and government-issued car crash reports. The study produced a publicly available dataset called Black Spots of North Greece (BSNG) and a highly accurate identification method.

* Data 2023, 8, 110  
Viaarxiv icon

Defect detection using weakly supervised learning

Mar 27, 2023
Vasileios Sevetlidis, George Pavlidis, Vasiliki Balaska, Athanasios Psomoulis, Spyridon Mouroutsos, Antonios Gasteratos

Figure 1 for Defect detection using weakly supervised learning
Figure 2 for Defect detection using weakly supervised learning
Figure 3 for Defect detection using weakly supervised learning

In many real-world scenarios, obtaining large amounts of labeled data can be a daunting task. Weakly supervised learning techniques have gained significant attention in recent years as an alternative to traditional supervised learning, as they enable training models using only a limited amount of labeled data. In this paper, the performance of a weakly supervised classifier to its fully supervised counterpart is compared on the task of defect detection. Experiments are conducted on a dataset of images containing defects, and evaluate the two classifiers based on their accuracy, precision, and recall. Our results show that the weakly supervised classifier achieves comparable performance to the supervised classifier, while requiring significantly less labeled data.

Viaarxiv icon

Dens-PU: PU Learning with Density-Based Positive Labeled Augmentation

Mar 21, 2023
Vasileios Sevetlidis, George Pavlidis, Spyridon Mouroutsos, Antonios Gasteratos

Figure 1 for Dens-PU: PU Learning with Density-Based Positive Labeled Augmentation
Figure 2 for Dens-PU: PU Learning with Density-Based Positive Labeled Augmentation
Figure 3 for Dens-PU: PU Learning with Density-Based Positive Labeled Augmentation
Figure 4 for Dens-PU: PU Learning with Density-Based Positive Labeled Augmentation

This study proposes a novel approach for solving the PU learning problem based on an anomaly-detection strategy. Latent encodings extracted from positive-labeled data are linearly combined to acquire new samples. These new samples are used as embeddings to increase the density of positive-labeled data and, thus, define a boundary that approximates the positive class. The further a sample is from the boundary the more it is considered as a negative sample. Once a set of negative samples is obtained, the PU learning problem reduces to binary classification. The approach, named Dens-PU due to its reliance on the density of positive-labeled data, was evaluated using benchmark image datasets, and state-of-the-art results were attained.

Viaarxiv icon

UniMorph 4.0: Universal Morphology

May 10, 2022
Khuyagbaatar Batsuren, Omer Goldman, Salam Khalifa, Nizar Habash, Witold Kieraś, Gábor Bella, Brian Leonard, Garrett Nicolai, Kyle Gorman, Yustinus Ghanggo Ate, Maria Ryskina, Sabrina J. Mielke, Elena Budianskaya, Charbel El-Khaissi, Tiago Pimentel, Michael Gasser, William Lane, Mohit Raj, Matt Coler, Jaime Rafael Montoya Samame, Delio Siticonatzi Camaiteri, Esaú Zumaeta Rojas, Didier López Francis, Arturo Oncevay, Juan López Bautista, Gema Celeste Silva Villegas, Lucas Torroba Hennigen, Adam Ek, David Guriel, Peter Dirix, Jean-Philippe Bernardy, Andrey Scherbakov, Aziyana Bayyr-ool, Antonios Anastasopoulos, Roberto Zariquiey, Karina Sheifer, Sofya Ganieva, Hilaria Cruz, Ritván Karahóǧa, Stella Markantonatou, George Pavlidis, Matvey Plugaryov, Elena Klyachko, Ali Salehi, Candy Angulo, Jatayu Baxi, Andrew Krizhanovsky, Natalia Krizhanovskaya, Elizabeth Salesky, Clara Vania, Sardana Ivanova, Jennifer White, Rowan Hall Maudslay, Josef Valvoda, Ran Zmigrod, Paula Czarnowska, Irene Nikkarinen, Aelita Salchak, Brijesh Bhatt, Christopher Straughn, Zoey Liu, Jonathan North Washington, Yuval Pinter, Duygu Ataman, Marcin Wolinski, Totok Suhardijanto, Anna Yablonskaya, Niklas Stoehr, Hossep Dolatian, Zahroh Nuriah, Shyam Ratan, Francis M. Tyers, Edoardo M. Ponti, Grant Aiton, Aryaman Arora, Richard J. Hatcher, Ritesh Kumar, Jeremiah Young, Daria Rodionova, Anastasia Yemelina, Taras Andrushko, Igor Marchenko, Polina Mashkovtseva, Alexandra Serova, Emily Prud'hommeaux, Maria Nepomniashchaya, Fausto Giunchiglia, Eleanor Chodroff, Mans Hulden, Miikka Silfverberg, Arya D. McCarthy, David Yarowsky, Ryan Cotterell, Reut Tsarfaty, Ekaterina Vylomova

Figure 1 for UniMorph 4.0: Universal Morphology
Figure 2 for UniMorph 4.0: Universal Morphology
Figure 3 for UniMorph 4.0: Universal Morphology
Figure 4 for UniMorph 4.0: Universal Morphology

The Universal Morphology (UniMorph) project is a collaborative effort providing broad-coverage instantiated normalized morphological inflection tables for hundreds of diverse world languages. The project comprises two major thrusts: a language-independent feature schema for rich morphological annotation and a type-level resource of annotated data in diverse languages realizing that schema. This paper presents the expansions and improvements made on several fronts over the last couple of years (since McCarthy et al. (2020)). Collaborative efforts by numerous linguists have added 67 new languages, including 30 endangered languages. We have implemented several improvements to the extraction pipeline to tackle some issues, e.g. missing gender and macron information. We have also amended the schema to use a hierarchical structure that is needed for morphological phenomena like multiple-argument agreement and case stacking, while adding some missing morphological features to make the schema more inclusive. In light of the last UniMorph release, we also augmented the database with morpheme segmentation for 16 languages. Lastly, this new release makes a push towards inclusion of derivational morphology in UniMorph by enriching the data and annotation schema with instances representing derivational processes from MorphyNet.

* LREC 2022; The first two authors made equal contributions 
Viaarxiv icon

Deep learning approaches in food recognition

Apr 08, 2020
Chairi Kiourt, George Pavlidis, Stella Markantonatou

Figure 1 for Deep learning approaches in food recognition
Figure 2 for Deep learning approaches in food recognition
Figure 3 for Deep learning approaches in food recognition
Figure 4 for Deep learning approaches in food recognition

Automatic image-based food recognition is a particularly challenging task. Traditional image analysis approaches have achieved low classification accuracy in the past, whereas deep learning approaches enabled the identification of food types and their ingredients. The contents of food dishes are typically deformable objects, usually including complex semantics, which makes the task of defining their structure very difficult. Deep learning methods have already shown very promising results in such challenges, so this chapter focuses on the presentation of some popular approaches and techniques applied in image-based food recognition. The three main lines of solutions, namely the design from scratch, the transfer learning and the platform-based approaches, are outlined, particularly for the task at hand, and are tested and compared to reveal the inherent strengths and weaknesses. The chapter is complemented with basic background material, a section devoted to the relevant datasets that are crucial in light of the empirical approaches adopted, and some concluding remarks that underline the future directions.

* 26 pages, 10 figures, book chapter for Machine Learning Paradigms - Advances in Theory and Applications of Deep Learning 
Viaarxiv icon