Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Geoffrey Ye Li

Is NOMA Efficient in Multi-Antenna Networks? A Critical Look at Next Generation Multiple Access Techniques


Jan 12, 2021
Bruno Clerckx, Yijie Mao, Robert Schober, Eduard Jorswieck, David J. Love, Jinhong Yuan, Lajos Hanzo, Geoffrey Ye Li, Erik G. Larsson, Giuseppe Caire

* submitted for publication 

  Access Paper or Ask Questions

Phase Retrieval using Expectation Consistent Signal Recovery Algorithm based on Hypernetwork


Jan 12, 2021
Chang-Jen Wang, Chao-Kai Wen, Shang-Ho, Tsai, Shi Jin, Geoffrey Ye Li

* 13 pages, 9 figures, submitted to IEEE SP 

  Access Paper or Ask Questions

Acquisition of Channel State Information for mmWave Massive MIMO: Traditional and Machine Learning-based Approaches


Jun 16, 2020
Chenhao Qi, Peihao Dong, Wenyan Ma, Hua Zhang, Zaichen Zhang, Geoffrey Ye Li


  Access Paper or Ask Questions

Reinforcement Learning Based Cooperative Coded Caching under Dynamic Popularities in Ultra-Dense Networks


Mar 08, 2020
Shen Gao, Peihao Dong, Zhiwen Pan, Geoffrey Ye Li

* 14 pages, 13 figures, accepted by IEEE Transactions on Vehicular Technology 

  Access Paper or Ask Questions

Learn to Compress CSI and Allocate Resources in Vehicular Networks


Aug 12, 2019
Liang Wang, Hao Ye, Le Liang, Geoffrey Ye Li

* arXiv admin note: text overlap with arXiv:1908.03447 

  Access Paper or Ask Questions

Learn to Allocate Resources in Vehicular Networks


Jul 30, 2019
Liang Wang, Hao Ye, Le Liang, Geoffrey Ye Li


  Access Paper or Ask Questions

Model-Driven Deep Learning for Joint MIMO Channel Estimation and Signal Detection


Jul 22, 2019
Hengtao He, Chao-Kai Wen, Shi Jin, Geoffrey Ye Li

* 27 Pages, 8 Figures, 1 Table. This paper has been submitted to the IEEE for possible publication 

  Access Paper or Ask Questions

Deep Learning based Wireless Resource Allocation with Application to Vehicular Networks


Jul 07, 2019
Le Liang, Hao Ye, Guanding Yu, Geoffrey Ye Li

* 13 pages; 8 figures; 3 tables; submitted to IEEE journals for possbile publication 

  Access Paper or Ask Questions

Deep Learning Based on Orthogonal Approximate Message Passing for CP-Free OFDM


May 04, 2019
Jing Zhang, Hengtao He, Chao-Kai Wen, Shi Jin, Geoffrey Ye Li

* 5 pages, 4 figures, updated manuscript, International Conference on Acoustics, Speech and Signal Processing (ICASSP 2019). arXiv admin note: substantial text overlap with arXiv:1903.04766 

  Access Paper or Ask Questions

Artificial Intelligence-aided OFDM Receiver: Design and Experimental Results


Dec 20, 2018
Peiwen Jiang, Tianqi Wang, Bin Han, Xuanxuan Gao, Jing Zhang, Chao-Kai Wen, Shi Jin, Geoffrey Ye Li

* 29 pages, 13 figures, submitted to IEEE Journal on Selected Areas in Communications 

  Access Paper or Ask Questions

Towards Intelligent Vehicular Networks: A Machine Learning Framework


Sep 28, 2018
Le Liang, Hao Ye, Geoffrey Ye Li

* Accepted by IEEE Internet of Things Journal 

  Access Paper or Ask Questions

Model-Driven Deep Learning for Physical Layer Communications


Sep 17, 2018
Hengtao He, Shi Jin, Chao-Kai Wen, Feifei Gao, Geoffrey Ye Li, Zongben Xu

* 14 pages,6 figures 

  Access Paper or Ask Questions