Abstract:While deep learning (DL) architectures like convolutional neural networks (CNNs) have enabled effective solutions in image denoising, in general their implementations overly rely on training data, lack interpretability, and require tuning of a large parameter set. In this paper, we combine classical graph signal filtering with deep feature learning into a competitive hybrid design---one that utilizes interpretable analytical low-pass graph filters and employs 80% fewer network parameters than state-of-the-art DL denoising scheme DnCNN. Specifically, to construct a suitable similarity graph for graph spectral filtering, we first adopt a CNN to learn feature representations per pixel, and then compute feature distances to establish edge weights. Given a constructed graph, we next formulate a convex optimization problem for denoising using a graph total variation (GTV) prior. Via a $l_1$ graph Laplacian reformulation, we interpret its solution in an iterative procedure as a graph low-pass filter and derive its frequency response. For fast filter implementation, we realize this response using a Lanczos approximation. Experimental results show that in the case of statistical mistmatch, our algorithm outperformed DnCNN by up to 3dB in PSNR.
Abstract:Given a convex and differentiable objective $Q(\M)$ for a real, symmetric matrix $\M$ in the positive definite (PD) cone---used to compute Mahalanobis distances---we propose a fast general metric learning framework that is entirely projection-free. We first assume that $\M$ resides in a space $\cS$ of generalized graph Laplacian matrices (graph metric matrices) corresponding to balanced signed graphs. Unlike low-rank metric matrices common in the literature, $\cS$ includes the important diagonal-only matrices as a special case. The key theorem to circumvent full eigen-decomposition and enable fast metric matrix optimization is Gershgorin disc alignment (GDA): given graph metric matrix $\M \in \cS$ and diagonal matrix $\S$, where $S_{ii} = 1/v_i$ and $\v$ is the first eigenvector of $\M$, we prove that Gershgorin disc left-ends of similar transform $\B = \S \M \S^{-1}$ are perfectly aligned at the smallest eigenvalue $\lambda_{\min}$. Using this theorem, we replace the PD cone constraint in the metric learning problem with tightest possible linear constraints per iteration, so that the alternating optimization of the diagonal / off-diagonal terms in $\M$ can be solved efficiently as linear programs via Frank-Wolfe iterations. We update $\v$ using Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) with warm start as matrix entries in $\M$ are optimized successively. Experiments show that our graph metric optimization is significantly faster than cone-projection methods, and produces competitive binary classification performance.
Abstract:The study of sampling signals on graphs, with the goal of building an analog of sampling for standard signals in the time and spatial domains, has attracted considerable attention recently. Beyond adding to the growing theory on graph signal processing (GSP), sampling on graphs has various promising applications. In this article, we review current progress on sampling over graphs focusing on theory and potential applications. Most methodologies used in graph signal sampling are designed to parallel those used in sampling for standard signals, however, sampling theory for graph signals significantly differs from that for Shannon--Nyquist and shift invariant signals. This is due in part to the fact that the definitions of several important properties, such as shift invariance and bandlimitedness, are different in GSP systems. Throughout, we discuss similarities and differences between standard and graph sampling and highlight open problems and challenges.
Abstract:We propose a fast general projection-free metric learning framework, where the minimization objective $\min_{\textbf{M} \in \mathcal{S}} Q(\textbf{M})$ is a convex differentiable function of the metric matrix $\textbf{M}$, and $\textbf{M}$ resides in the set $\mathcal{S}$ of generalized graph Laplacian matrices for connected graphs with positive edge weights and node degrees. Unlike low-rank metric matrices common in the literature, $\mathcal{S}$ includes the important positive-diagonal-only matrices as a special case in the limit. The key idea for fast optimization is to rewrite the positive definite cone constraint in $\mathcal{S}$ as signal-adaptive linear constraints via Gershgorin disc alignment, so that the alternating optimization of the diagonal and off-diagonal terms in $\textbf{M}$ can be solved efficiently as linear programs via Frank-Wolfe iterations. We prove that the Gershgorin discs can be aligned perfectly using the first eigenvector $\textbf{v}$ of $\textbf{M}$, which we update iteratively using Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) with warm start as diagonal / off-diagonal terms are optimized. Experiments show that our efficiently computed graph metric matrices outperform metrics learned using competing methods in terms of classification tasks.
Abstract:Convolutional neural network (CNN)-based feature learning has become state of the art, since given sufficient training data, CNN can significantly outperform traditional methods for various classification tasks. However, feature learning becomes more difficult if some training labels are noisy. With traditional regularization techniques, CNN often overfits to the noisy training labels, resulting in sub-par classification performance. In this paper, we propose a robust binary classifier, based on CNNs, to learn deep metric functions, which are then used to construct an optimal underlying graph structure used to clean noisy labels via graph Laplacian regularization (GLR). GLR is posed as a convex maximum a posteriori (MAP) problem solved via convex quadratic programming (QP). To penalize samples around the decision boundary, we propose two regularized loss functions for semi-supervised learning. The binary classification experiments on three datasets, varying in number and type of features, demonstrate that given a noisy training dataset, our proposed networks outperform several state-of-the-art classifiers, including label-noise robust support vector machine, CNNs with three different robust loss functions, model-based GLR, and dynamic graph CNN classifiers.
Abstract:Identifying an appropriate underlying graph kernel that reflects pairwise similarities is critical in many recent graph spectral signal restoration schemes, including image denoising, dequantization, and contrast enhancement. Existing graph learning algorithms compute the most likely entries of a properly defined graph Laplacian matrix $\mathbf{L}$, but require a large number of signal observations $\mathbf{z}$'s for a stable estimate. In this work, we assume instead the availability of a relevant feature vector $\mathbf{f}_i$ per node $i$, from which we compute an optimal feature graph via optimization of a feature metric. Specifically, we alternately optimize the diagonal and off-diagonal entries of a Mahalanobis distance matrix $\mathbf{M}$ by minimizing the graph Laplacian regularizer (GLR) $\mathbf{z}^{\top} \mathbf{L} \mathbf{z}$, where edge weight is $w_{i,j} = \exp\{-(\mathbf{f}_i - \mathbf{f}_j)^{\top} \mathbf{M} (\mathbf{f}_i - \mathbf{f}_j) \}$, given a single observation $\mathbf{z}$. We optimize diagonal entries via proximal gradient (PG), where we constrain $\mathbf{M}$ to be positive definite (PD) via linear inequalities derived from the Gershgorin circle theorem. To optimize off-diagonal entries, we design a block descent algorithm that iteratively optimizes one row and column of $\mathbf{M}$. To keep $\mathbf{M}$ PD, we constrain the Schur complement of sub-matrix $\mathbf{M}_{2,2}$ of $\mathbf{M}$ to be PD when optimizing via PG. Our algorithm mitigates full eigen-decomposition of $\mathbf{M}$, thus ensuring fast computation speed even when feature vector $\mathbf{f}_i$ has high dimension. To validate its usefulness, we apply our feature graph learning algorithm to the problem of 3D point cloud denoising, resulting in state-of-the-art performance compared to competing schemes in extensive experiments.
Abstract:We propose to combine the robustness merit of model-based approaches and the learning power of data-driven approaches for image restoration. Specifically, by integrating graph Laplacian regularization as a trainable module into a deep learning framework, we are less susceptible to overfitting than pure CNN-based approaches, achieving higher robustness to small dataset and cross-domain denoising. First, a sparse neighborhood graph is built from the output of a convolutional neural network (CNN). Then the image is restored by solving an unconstrained quadratic programming problem, using a corresponding graph Laplacian regularizer as a prior term. The proposed restoration pipeline is fully differentiable and hence can be end-to-end trained. Experimental results demonstrate that our work avoids overfitting given small training data. It is also endowed with strong cross-domain generalization power, outperforming the state-of-the-art approaches by remarkable margin.
Abstract:Despite generative adversarial networks (GANs) can hallucinate photo-realistic high-resolution (HR) faces from low-resolution (LR) faces, they cannot guarantee preserving the identities of hallucinated HR faces, making the HR faces poorly recognizable. To address this problem, we propose a Siamese GAN (SiGAN) to reconstruct HR faces that visually resemble their corresponding identities. On top of a Siamese network, the proposed SiGAN consists of a pair of two identical generators and one discriminator. We incorporate reconstruction error and identity label information in the loss function of SiGAN in a pairwise manner. By iteratively optimizing the loss functions of the generator pair and discriminator of SiGAN, we cannot only achieve photo-realistic face reconstruction, but also ensures the reconstructed information is useful for identity recognition. Experimental results demonstrate that SiGAN significantly outperforms existing face hallucination GANs in objective face verification performance, while achieving photo-realistic reconstruction. Moreover, for input LR faces from unknown identities who are not included in training, SiGAN can still do a good job.
Abstract:3D point cloud - a new signal representation of volumetric objects - is a discrete collection of triples marking exterior object surface locations in 3D space. Conventional imperfect acquisition processes of 3D point cloud - e.g., stereo-matching from multiple viewpoint images or depth data acquired directly from active light sensors - imply non-negligible noise in the data. In this paper, we adopt a previously proposed low-dimensional manifold model for the surface patches in the point cloud and seek self-similar patches to denoise them simultaneously using the patch manifold prior. Due to discrete observations of the patches on the manifold, we approximate the manifold dimension computation defined in the continuous domain with a patch-based graph Laplacian regularizer and propose a new discrete patch distance measure to quantify the similarity between two same-sized surface patches for graph construction that is robust to noise. We show that our graph Laplacian regularizer has a natural graph spectral interpretation, and has desirable numerical stability properties via eigenanalysis. Extensive simulation results show that our proposed denoising scheme can outperform state-of-the-art methods in objective metrics and can better preserve visually salient structural features like edges.
Abstract:Blind image deblurring, i.e., deblurring without knowledge of the blur kernel, is a highly ill-posed problem. The problem can be solved in two parts: i) estimate a blur kernel from the blurry image, and ii) given estimated blur kernel, de-convolve blurry input to restore the target image. In this paper, we propose a graph-based blind image deblurring algorithm by interpreting an image patch as a signal on a weighted graph. Specifically, we first argue that a skeleton image---a proxy that retains the strong gradients of the target but smooths out the details---can be used to accurately estimate the blur kernel and has a unique bi-modal edge weight distribution. Then, we design a reweighted graph total variation (RGTV) prior that can efficiently promote a bi-modal edge weight distribution given a blurry patch. Further, to analyze RGTV in the graph frequency domain, we introduce a new weight function to represent RGTV as a graph $l_1$-Laplacian regularizer. This leads to a graph spectral filtering interpretation of the prior with desirable properties, including robustness to noise and blur, strong piecewise smooth (PWS) filtering and sharpness promotion. Minimizing a blind image deblurring objective with RGTV results in a non-convex non-differentiable optimization problem. We leverage the new graph spectral interpretation for RGTV to design an efficient algorithm that solves for the skeleton image and the blur kernel alternately. Specifically for Gaussian blur, we propose a further speedup strategy for blind Gaussian deblurring using accelerated graph spectral filtering. Finally, with the computed blur kernel, recent non-blind image deblurring algorithms can be applied to restore the target image. Experimental results demonstrate that our algorithm successfully restores latent sharp images and outperforms state-of-the-art methods quantitatively and qualitatively.