In this expository article, we provide a self-contained overview of the notion of convolution embedded in different theories: from the classical Fourier theory to the theory of algebraic signal processing. We discuss their relations and differences. Toward the end, we provide an opinion on whether there is a consistent approach to convolution that unifies seemingly different approaches by different theories.
In this paper we consider the problem of constructing graph Fourier transforms (GFTs) for directed graphs (digraphs), with a focus on developing multiple GFT designs that can capture different types of variation over the digraph node-domain. Specifically, for any given digraph we propose three GFT designs based on the polar decomposition. Our method is closely related to existing polar decomposition based GFT designs, but with added interpretability in the digraph node-domain. Each of our proposed digraph GFTs has a clear node domain variation interpretation, so that one or more of the GFTs can be used to extract different insights from available graph signals. We demonstrate the benefits of our approach experimentally using M-block cyclic graphs, showing that the diffusion of signals on the graph leads to changes in the spectrum obtained from our proposed GFTs, but cannot be observed with the conventional GFT definition.
Graph signal processing (GSP) generalizes signal processing (SP) tasks to signals living on non-Euclidean domains whose structure can be captured by a weighted graph. Graphs are versatile, able to model irregular interactions, easy to interpret, and endowed with a corpus of mathematical results, rendering them natural candidates to serve as the basis for a theory of processing signals in more irregular domains. In this article, we provide an overview of the evolution of GSP, from its origins to the challenges ahead. The first half is devoted to reviewing the history of GSP and explaining how it gave rise to an encompassing framework that shares multiple similarities with SP. A key message is that GSP has been critical to develop novel and technically sound tools, theory, and algorithms that, by leveraging analogies with and the insights of digital SP, provide new ways to analyze, process, and learn from graph signals. In the second half, we shift focus to review the impact of GSP on other disciplines. First, we look at the use of GSP in data science problems, including graph learning and graph-based deep learning. Second, we discuss the impact of GSP on applications, including neuroscience and image and video processing. We conclude with a brief discussion of the emerging and future directions of GSP.
In this paper, we explore the topic of graph learning from the perspective of the Irregularity-Aware Graph Fourier Transform, with the goal of learning the graph signal space inner product to better model data. We propose a novel method to learn a graph with smaller edge weight upper bounds compared to combinatorial Laplacian approaches. Experimentally, our approach yields much sparser graphs compared to a combinatorial Laplacian approach, with a more interpretable model.
In numerous graph signal processing applications, data is often missing for a variety of reasons, and predicting the missing data is essential. In this paper, we consider data on graphs modeled as bandlimited graph signals. Predicting or reconstructing the unknown signal values for such a model requires an estimate of the signal bandwidth. In this paper, we address the problem of estimating the reconstruction errors, minimizing which would thereby provide an estimate of the signal bandwidth. In doing so, we design a cross-validation approach needed for stable graph signal reconstruction and propose a method for estimating the reconstruction errors for different choices of signal bandwidth. Using this technique, we are able to estimate the reconstruction error on a variety of real-world graphs.
User generated content (UGC) refers to videos that are uploaded by users and shared over the Internet. UGC may have low quality due to noise and previous compression. When re-encoding UGC for streaming or downloading, a traditional video coding pipeline will perform rate-distortion (RD) optimization to choose coding parameters. However, in the UGC video coding case, since the input is not pristine, quality ``saturation'' (or even degradation) can be observed, i.e., increased bitrate only leads to improved representation of coding artifacts and noise present in the UGC input. In this paper, we study the saturation problem in UGC compression, where the goal is to identify and avoid during encoding, the coding parameters and rates that lead to quality saturation. We proposed a geometric criterion for saturation detection that works with rate-distortion optimization, and only requires a few frames from the UGC video. In addition, we show how to combine the proposed saturation detection method with existing video coding systems that implement rate-distortion optimization for efficient compression of UGC videos.
Most codec designs rely on the mean squared error (MSE) as a fidelity metric in rate-distortion optimization, which allows to choose the optimal parameters in the transform domain but may fail to reflect perceptual quality. Alternative distortion metrics, such as the structural similarity index (SSIM), can be computed only pixel-wise, so they cannot be used directly for transform-domain bit allocation. Recently, the irregularity-aware graph Fourier transform (IAGFT) emerged as a means to include pixel-wise perceptual information in the transform design. This paper extends this idea by also learning a graph (and corresponding transform) for sets of blocks that share similar perceptual characteristics and are observed to differ statistically, leading to different learned graphs. We demonstrate the effectiveness of our method with both SSIM- and saliency-based criteria. We also propose a framework to derive separable transforms, including separable IAGFTs. An empirical evaluation based on the 5th CLIC dataset shows that our approach achieves improvements in terms of MS-SSIM with respect to existing methods.
Modern machine learning systems are increasingly trained on large amounts of data embedded in high-dimensional spaces. Often this is done without analyzing the structure of the dataset. In this work, we propose a framework to study the geometric structure of the data. We make use of our recently introduced non-negative kernel (NNK) regression graphs to estimate the point density, intrinsic dimension, and the linearity of the data manifold (curvature). We further generalize the graph construction and geometric estimation to multiple scale by iteratively merging neighborhoods in the input data. Our experiments demonstrate the effectiveness of our proposed approach over other baselines in estimating the local geometry of the data manifolds on synthetic and real datasets.
In point cloud compression, exploiting temporal redundancy for inter predictive coding is challenging because of the irregular geometry. This paper proposes an efficient block-based inter-coding scheme for color attribute compression. The scheme includes integer-precision motion estimation and an adaptive graph based in-loop filtering scheme for improved attribute prediction. The proposed block-based motion estimation scheme consists of an initial motion search that exploits geometric and color attributes, followed by a motion refinement that only minimizes color prediction error. To further improve color prediction, we propose a vertex-domain low-pass graph filtering scheme that can adaptively remove noise from predictors computed from motion estimation with different accuracy. Our experiments demonstrate significant coding gain over state-of-the-art coding methods.
Self-supervised learning (SSL) has emerged as a desirable paradigm in computer vision due to the inability of supervised models to learn representations that can generalize in domains with limited labels. The recent popularity of SSL has led to the development of several models that make use of diverse training strategies, architectures, and data augmentation policies with no existing unified framework to study or assess their effectiveness in transfer learning. We propose a data-driven geometric strategy to analyze different SSL models using local neighborhoods in the feature space induced by each. Unlike existing approaches that consider mathematical approximations of the parameters, individual components, or optimization landscape, our work aims to explore the geometric properties of the representation manifolds learned by SSL models. Our proposed manifold graph metrics (MGMs) provide insights into the geometric similarities and differences between available SSL models, their invariances with respect to specific augmentations, and their performances on transfer learning tasks. Our key findings are two fold: (i) contrary to popular belief, the geometry of SSL models is not tied to its training paradigm (contrastive, non-contrastive, and cluster-based); (ii) we can predict the transfer learning capability for a specific model based on the geometric properties of its semantic and augmentation manifolds.