Abstract:Gender-Based Violence (GBV) is an increasing problem online, but existing datasets fail to capture the plurality of possible annotator perspectives or ensure the representation of affected groups. We revisit two important stages in the moderation pipeline for GBV: (1) manual data labelling; and (2) automated classification. For (1), we examine two datasets to investigate the relationship between annotator identities and attitudes and the responses they give to two GBV labelling tasks. To this end, we collect demographic and attitudinal information from crowd-sourced annotators using three validated surveys from Social Psychology. We find that higher Right Wing Authoritarianism scores are associated with a higher propensity to label text as sexist, while for Social Dominance Orientation and Neosexist Attitudes, higher scores are associated with a negative tendency to do so. For (2), we conduct classification experiments using Large Language Models and five prompting strategies, including infusing prompts with annotator information. We find: (i) annotator attitudes affect the ability of classifiers to predict their labels; (ii) including attitudinal information can boost performance when we use well-structured brief annotator descriptions; and (iii) models struggle to reflect the increased complexity and imbalanced classes of the new label sets.
Abstract:This paper introduces a collaborative, human-centered taxonomy of AI, algorithmic and automation harms. We argue that existing taxonomies, while valuable, can be narrow, unclear, typically cater to practitioners and government, and often overlook the needs of the wider public. Drawing on existing taxonomies and a large repository of documented incidents, we propose a taxonomy that is clear and understandable to a broad set of audiences, as well as being flexible, extensible, and interoperable. Through iterative refinement with topic experts and crowdsourced annotation testing, we propose a taxonomy that can serve as a powerful tool for civil society organisations, educators, policymakers, product teams and the general public. By fostering a greater understanding of the real-world harms of AI and related technologies, we aim to increase understanding, empower NGOs and individuals to identify and report violations, inform policy discussions, and encourage responsible technology development and deployment.
Abstract:In recent years, counterspeech has emerged as one of the most promising strategies to fight online hate. These non-escalatory responses tackle online abuse while preserving the freedom of speech of the users, and can have a tangible impact in reducing online and offline violence. Recently, there has been growing interest from the Natural Language Processing (NLP) community in addressing the challenges of analysing, collecting, classifying, and automatically generating counterspeech, to reduce the huge burden of manually producing it. In particular, researchers have taken different directions in addressing these challenges, thus providing a variety of related tasks and resources. In this paper, we provide a guide for doing research on counterspeech, by describing - with detailed examples - the steps to undertake, and providing best practices that can be learnt from the NLP studies on this topic. Finally, we discuss open challenges and future directions of counterspeech research in NLP.
Abstract:Large language models (LLMs) reflect societal norms and biases, especially about gender. While societal biases and stereotypes have been extensively researched in various NLP applications, there is a surprising gap for emotion analysis. However, emotion and gender are closely linked in societal discourse. E.g., women are often thought of as more empathetic, while men's anger is more socially accepted. To fill this gap, we present the first comprehensive study of gendered emotion attribution in five state-of-the-art LLMs (open- and closed-source). We investigate whether emotions are gendered, and whether these variations are based on societal stereotypes. We prompt the models to adopt a gendered persona and attribute emotions to an event like 'When I had a serious argument with a dear person'. We then analyze the emotions generated by the models in relation to the gender-event pairs. We find that all models consistently exhibit gendered emotions, influenced by gender stereotypes. These findings are in line with established research in psychology and gender studies. Our study sheds light on the complex societal interplay between language, gender, and emotion. The reproduction of emotion stereotypes in LLMs allows us to use those models to study the topic in detail, but raises questions about the predictive use of those same LLMs for emotion applications.
Abstract:Natural language processing research has begun to embrace the notion of annotator subjectivity, motivated by variations in labelling. This approach understands each annotator's view as valid, which can be highly suitable for tasks that embed subjectivity, e.g., sentiment analysis. However, this construction may be inappropriate for tasks such as hate speech detection, as it affords equal validity to all positions on e.g., sexism or racism. We argue that the conflation of hate and offence can invalidate findings on hate speech, and call for future work to be situated in theory, disentangling hate from its orthogonal concept, offence.
Abstract:Counterspeech offers direct rebuttals to hateful speech by challenging perpetrators of hate and showing support to targets of abuse. It provides a promising alternative to more contentious measures, such as content moderation and deplatforming, by contributing a greater amount of positive online speech rather than attempting to mitigate harmful content through removal. Advances in the development of large language models mean that the process of producing counterspeech could be made more efficient by automating its generation, which would enable large-scale online campaigns. However, we currently lack a systematic understanding of several important factors relating to the efficacy of counterspeech for hate mitigation, such as which types of counterspeech are most effective, what are the optimal conditions for implementation, and which specific effects of hate it can best ameliorate. This paper aims to fill this gap by systematically reviewing counterspeech research in the social sciences and comparing methodologies and findings with computer science efforts in automatic counterspeech generation. By taking this multi-disciplinary view, we identify promising future directions in both fields.
Abstract:Automated dialogue or conversational systems are anthropomorphised by developers and personified by users. While a degree of anthropomorphism is inevitable, conscious and unconscious design choices can guide users to personify them to varying degrees. Encouraging users to relate to automated systems as if they were human can lead to transparency and trust issues, and high risk scenarios caused by over-reliance on their outputs. As a result, natural language processing researchers have begun to investigate factors that induce personification and develop resources to mitigate such effects. However, these efforts are fragmented, and many aspects of anthropomorphism have yet to be considered. In this paper, we discuss the linguistic factors that contribute to the anthropomorphism of dialogue systems and the harms that can arise, arguing that it can reinforce stereotypes of gender roles and notions of acceptable language. We recommend that future efforts towards developing dialogue systems take particular care in their design, development, release, and description; and attend to the many linguistic cues that can elicit personification by users.
Abstract:In this paper, we trace the biases in current natural language processing (NLP) models back to their origins in racism, sexism, and homophobia over the last 500 years. We review literature from critical race theory, gender studies, data ethics, and digital humanities studies, and summarize the origins of bias in NLP models from these social science perspective. We show how the causes of the biases in the NLP pipeline are rooted in social issues. Finally, we argue that the only way to fix the bias and unfairness in NLP is by addressing the social problems that caused them in the first place and by incorporating social sciences and social scientists in efforts to mitigate bias in NLP models. We provide actionable recommendations for the NLP research community to do so.
Abstract:There are two competing approaches for modelling annotator disagreement: distributional soft-labelling approaches (which aim to capture the level of disagreement) or modelling perspectives of individual annotators or groups thereof. We adapt a multi-task architecture -- which has previously shown success in modelling perspectives -- to evaluate its performance on the SEMEVAL Task 11. We do so by combining both approaches, i.e. predicting individual annotator perspectives as an interim step towards predicting annotator disagreement. Despite its previous success, we found that a multi-task approach performed poorly on datasets which contained distinct annotator opinions, suggesting that this approach may not always be suitable when modelling perspectives. Furthermore, our results explain that while strongly perspectivist approaches might not achieve state-of-the-art performance according to evaluation metrics used by distributional approaches, our approach allows for a more nuanced understanding of individual perspectives present in the data. We argue that perspectivist approaches are preferable because they enable decision makers to amplify minority views, and that it is important to re-evaluate metrics to reflect this goal.
Abstract:We report our efforts in identifying a set of previous human evaluations in NLP that would be suitable for a coordinated study examining what makes human evaluations in NLP more/less reproducible. We present our results and findings, which include that just 13\% of papers had (i) sufficiently low barriers to reproduction, and (ii) enough obtainable information, to be considered for reproduction, and that all but one of the experiments we selected for reproduction was discovered to have flaws that made the meaningfulness of conducting a reproduction questionable. As a result, we had to change our coordinated study design from a reproduce approach to a standardise-then-reproduce-twice approach. Our overall (negative) finding that the great majority of human evaluations in NLP is not repeatable and/or not reproducible and/or too flawed to justify reproduction, paints a dire picture, but presents an opportunity for a rethink about how to design and report human evaluations in NLP.