Abstract:Current speech language models generate responses directly without explicit reasoning, leading to errors that cannot be corrected once audio is produced. We introduce \textbf{``Silent Thought, Spoken Answer''} -- a paradigm where speech LLMs generate internal text reasoning alongside spoken responses, with thinking traces informing speech quality. To realize this, we present \method{}, the first diffusion-based speech-text language model supporting both understanding and generation, unifying discrete text and tokenized speech under a single masked diffusion framework. Unlike autoregressive approaches, \method{} jointly generates reasoning traces and speech tokens through iterative denoising, with modality-specific masking schedules. We also construct \dataset{}, the first speech QA dataset with paired text reasoning traces, containing 26K samples totaling 319 hours. Experiments show \method{} achieves state-of-the-art speech-to-speech QA accuracy, outperforming the best baseline by up to 9 points, while attaining the best TTS quality among generative models (6.2\% WER) and preserving language understanding (66.2\% MMLU). Ablations confirm that both the diffusion architecture and thinking traces contribute to these gains.




Abstract:Chain-of-Thought (CoT) reasoning has significantly advanced Large Language Models (LLMs) in solving complex tasks. However, its autoregressive paradigm leads to significant computational overhead, hindering its deployment in latency-sensitive applications. To address this, we propose \textbf{DART} (\textbf{D}istilling \textbf{A}utoregressive \textbf{R}easoning to Silent \textbf{T}hought), a self-distillation framework that enables LLMs to replace autoregressive CoT with non-autoregressive Silent Thought (ST). Specifically, DART introduces two training pathways: the CoT pathway for traditional reasoning and the ST pathway for generating answers directly from a few ST tokens. The ST pathway utilizes a lightweight Reasoning Evolvement Module (REM) to align its hidden states with the CoT pathway, enabling the ST tokens to evolve into informative embeddings. During inference, only the ST pathway is activated, leveraging evolving ST tokens to deliver the answer directly. Extensive experimental results demonstrate that DART achieves comparable reasoning performance to existing baselines while offering significant efficiency gains, serving as a feasible alternative for efficient reasoning.