Abstract:Accurate forest biomass quantification is vital for carbon cycle monitoring. While airborne LiDAR excels at capturing 3D forest structure, directly estimating woody volume and Aboveground Biomass (AGB) from point clouds is challenging due to difficulties in modeling long-range dependencies needed to distinguish trees.We propose Minkowski-MambaNet, a novel deep learning framework that directly estimates volume and AGB from raw LiDAR. Its key innovation is integrating the Mamba model's Selective State Space Model (SSM) into a Minkowski network, enabling effective encoding of global context and long-range dependencies for improved tree differentiation. Skip connections are incorporated to enhance features and accelerate convergence.Evaluated on Danish National Forest Inventory LiDAR data, Minkowski-MambaNet significantly outperforms state-of-the-art methods, providing more accurate and robust estimates. Crucially, it requires no Digital Terrain Model (DTM) and is robust to boundary artifacts. This work offers a powerful tool for large-scale forest biomass analysis, advancing LiDAR-based forest inventories.




Abstract:Prostate cancer represents a major threat to health. Early detection is vital in reducing the mortality rate among prostate cancer patients. One approach involves using multi-modality (CT, MRI, US, etc.) computer-aided diagnosis (CAD) systems for the prostate region. However, prostate segmentation is challenging due to imperfections in the images and the prostate's complex tissue structure. The advent of precision medicine and a significant increase in clinical capacity have spurred the need for various data-driven tasks in the field of medical imaging. Recently, numerous machine learning and data mining tools have been integrated into various medical areas, including image segmentation. This article proposes a new classification method that differentiates supervision types, either in number or kind, during the training phase. Subsequently, we conducted a survey on artificial intelligence (AI)-based automatic prostate segmentation methods, examining the advantages and limitations of each. Additionally, we introduce variants of evaluation metrics for the verification and performance assessment of the segmentation method and summarize the current challenges. Finally, future research directions and development trends are discussed, reflecting the outcomes of our literature survey, suggesting high-precision detection and treatment of prostate cancer as a promising avenue.