Abstract:Medical image segmentation is constrained by sparse pathological annotations. Existing augmentation strategies, from conventional transforms to random masking for self-supervision, are feature-agnostic: they often corrupt critical diagnostic semantics or fail to prioritize essential features. We introduce "Keep the Core," a novel data-centric paradigm that uses adversarial priors to guide both augmentation and masking in a significance-preserving manner. Our approach uses SAGE (Sparse Adversarial Gated Estimator), an offline module identifying minimal tokens whose micro-perturbation flips segmentation boundaries. SAGE forges the Token Importance Map $W$ by solving an adversarial optimization problem to maximally degrade performance, while an $\ell_1$ sparsity penalty encourages a compact set of sensitive tokens. The online KEEP (Key-region Enhancement \& Preservation) module uses $W$ for a two-pronged augmentation strategy: (1) Semantic-Preserving Augmentation: High-importance tokens are augmented, but their original pixel values are strictly restored. (2) Guided-Masking Augmentation: Low-importance tokens are selectively masked for an $\text{MAE}$-style reconstruction, forcing the model to learn robust representations from preserved critical features. "Keep the Core" is backbone-agnostic with no inference overhead. Extensive experiments show SAGE's structured priors and KEEP's region-selective mechanism are highly complementary, achieving state-of-the-art segmentation robustness and generalization on 2D medical datasets.
Abstract:Accurate forest biomass quantification is vital for carbon cycle monitoring. While airborne LiDAR excels at capturing 3D forest structure, directly estimating woody volume and Aboveground Biomass (AGB) from point clouds is challenging due to difficulties in modeling long-range dependencies needed to distinguish trees.We propose Minkowski-MambaNet, a novel deep learning framework that directly estimates volume and AGB from raw LiDAR. Its key innovation is integrating the Mamba model's Selective State Space Model (SSM) into a Minkowski network, enabling effective encoding of global context and long-range dependencies for improved tree differentiation. Skip connections are incorporated to enhance features and accelerate convergence.Evaluated on Danish National Forest Inventory LiDAR data, Minkowski-MambaNet significantly outperforms state-of-the-art methods, providing more accurate and robust estimates. Crucially, it requires no Digital Terrain Model (DTM) and is robust to boundary artifacts. This work offers a powerful tool for large-scale forest biomass analysis, advancing LiDAR-based forest inventories.