Abstract:Inference-time steering enables pretrained diffusion/flow models to be adapted to new tasks without retraining. A widely used approach is the ratio-of-densities method, which defines a time-indexed target path by reweighting probability-density trajectories from multiple models with positive, or in some cases, negative exponents. This construction, however, harbors a critical and previously unformalized failure mode: Marginal Path Collapse, where intermediate densities become non-normalizable even though endpoints remain valid. Collapse arises systematically when composing heterogeneous models trained on different noise schedules or datasets, including a common setting in molecular design where de-novo, conformer, and pocket-conditioned models must be combined for tasks such as flexible-pose scaffold decoration. We provide a novel and complete solution for the problem. First, we derive a simple path existence criterion that predicts exactly when collapse occurs from noise schedules and exponents alone. Second, we introduce Adaptive path Correction with Exponents (ACE), which extends Feynman-Kac steering to time-varying exponents and guarantees a valid probability path. On a synthetic 2D benchmark and on flexible-pose scaffold decoration, ACE eliminates collapse and enables high-guidance compositional generation, improving distributional and docking metrics over constant-exponent baselines and even specialized task-specific scaffold decoration models. Our work turns ratio-of-densities steering with heterogeneous experts from an unstable heuristic into a reliable tool for controllable generation.
Abstract:Linker generation is critical in drug discovery applications such as lead optimization and PROTAC design, where molecular fragments are assembled into diverse drug candidates. Existing methods fall into PC-Free and PC-Aware categories based on their use of 3D point clouds (PC). PC-Free models prioritize diversity but suffer from lower validity due to overlooking PC constraints, while PC-Aware models ensure higher validity but restrict diversity by enforcing strict PC constraints. To overcome these trade-offs without additional training, we propose HybridLinker, a framework that enhances PC-Aware inference by providing diverse bonding topologies from a pretrained PC-Free model as guidance. At its core, we propose LinkerDPS, the first diffusion posterior sampling (DPS) method operating across PC-Free and PC-Aware spaces, bridging molecular topology with 3D point clouds via an energy-inspired function. By transferring the diverse sampling distribution of PC-Free models into the PC-Aware distribution, HybridLinker significantly and consistently surpasses baselines, improving both validity and diversity in foundational molecular design and applied property optimization tasks, establishing a new DPS framework in the molecular and graph domains beyond imaging.