Abstract:Why do large pre-trained transformer-based models perform so well across a wide variety of NLP tasks? Recent research suggests the key may lie in multi-headed attention mechanism's ability to learn and represent linguistic information. Understanding how these models represent both syntactic and semantic knowledge is vital to investigate why they succeed and fail, what they have learned, and how they can improve. We present Dodrio, an open-source interactive visualization tool to help NLP researchers and practitioners analyze attention mechanisms in transformer-based models with linguistic knowledge. Dodrio tightly integrates an overview that summarizes the roles of different attention heads, and detailed views that help users compare attention weights with the syntactic structure and semantic information in the input text. To facilitate the visual comparison of attention weights and linguistic knowledge, Dodrio applies different graph visualization techniques to represent attention weights scalable to longer input text. Case studies highlight how Dodrio provides insights into understanding the attention mechanism in transformer-based models. Dodrio is available at https://poloclub.github.io/dodrio/.
Abstract:The advent of larger machine learning (ML) models have improved state-of-the-art (SOTA) performance in various modeling tasks, ranging from computer vision to natural language. As ML models continue increasing in size, so does their respective energy consumption and computational requirements. However, the methods for tracking, reporting, and comparing energy consumption remain limited. We presentEnergyVis, an interactive energy consumption tracker for ML models. Consisting of multiple coordinated views, EnergyVis enables researchers to interactively track, visualize and compare model energy consumption across key energy consumption and carbon footprint metrics (kWh and CO2), helping users explore alternative deployment locations and hardware that may reduce carbon footprints. EnergyVis aims to raise awareness concerning computational sustainability by interactively highlighting excessive energy usage during model training; and by providing alternative training options to reduce energy usage.
Abstract:Training deep neural networks for automatic speech recognition (ASR) requires large amounts of transcribed speech. This becomes a bottleneck for training robust models for accented speech which typically contains high variability in pronunciation and other semantics, since obtaining large amounts of annotated accented data is both tedious and costly. Often, we only have access to large amounts of unannotated speech from different accents. In this work, we leverage this unannotated data to provide semantic regularization to an ASR model that has been trained only on one accent, to improve its performance for multiple accents. We propose Accent Pre-Training (Acc-PT), a semi-supervised training strategy that combines transfer learning and adversarial training. Our approach improves the performance of a state-of-the-art ASR model by 33% on average over the baseline across multiple accents, training only on annotated samples from one standard accent, and as little as 105 minutes of unannotated speech from a target accent.
Abstract:With the widespread use of toxic language online, platforms are increasingly using automated systems that leverage advances in natural language processing to automatically flag and remove toxic comments. However, most automated systems -- when detecting and moderating toxic language -- do not provide feedback to their users, let alone provide an avenue of recourse for these users to make actionable changes. We present our work, RECAST, an interactive, open-sourced web tool for visualizing these models' toxic predictions, while providing alternative suggestions for flagged toxic language. Our work also provides users with a new path of recourse when using these automated moderation tools. RECAST highlights text responsible for classifying toxicity, and allows users to interactively substitute potentially toxic phrases with neutral alternatives. We examined the effect of RECAST via two large-scale user evaluations, and found that RECAST was highly effective at helping users reduce toxicity as detected through the model. Users also gained a stronger understanding of the underlying toxicity criterion used by black-box models, enabling transparency and recourse. In addition, we found that when users focus on optimizing language for these models instead of their own judgement (which is the implied incentive and goal of deploying automated models), these models cease to be effective classifiers of toxicity compared to human annotations. This opens a discussion for how toxicity detection models work and should work, and their effect on the future of online discourse.
Abstract:Computer vision is playing an increasingly important role in automated malware detection with to the rise of the image-based binary representation. These binary images are fast to generate, require no feature engineering, and are resilient to popular obfuscation methods. Significant research has been conducted in this area, however, it has been restricted to small-scale or private datasets that only a few industry labs and research teams have access to. This lack of availability hinders examination of existing work, development of new research, and dissemination of ideas. We introduce MalNet, the largest publicly available cybersecurity image database, offering 133x more images and 27x more classes than the only other public binary-image database. MalNet contains over 1.2 million images across a hierarchy of 47 types and 696 families. We provide extensive analysis of MalNet, discussing its properties and provenance. The scale and diversity of MalNet unlocks new and exciting cybersecurity opportunities to the computer vision community--enabling discoveries and research directions that were previously not possible. The database is publicly available at www.mal-net.org.
Abstract:Skeleton-based human action recognition technologies are increasingly used in video based applications, such as home robotics, healthcare on aging population, and surveillance. However, such models are vulnerable to adversarial attacks, raising serious concerns for their use in safety-critical applications. To develop an effective defense against attacks, it is essential to understand how such attacks mislead the pose detection models into making incorrect predictions. We present SkeletonVis, the first interactive system that visualizes how the attacks work on the models to enhance human understanding of attacks.
Abstract:With the rapid emergence of graph representation learning, the construction of new large-scale datasets are necessary to distinguish model capabilities and accurately assess the strengths and weaknesses of each technique. By carefully analyzing existing graph databases, we identify 3 critical components important for advancing the field of graph representation learning: (1) large graphs, (2) many graphs, and (3) class diversity. To date, no single graph database offers all of these desired properties. We introduce MalNet, the largest public graph database ever constructed, representing a large-scale ontology of software function call graphs. MalNet contains over 1.2 million graphs, averaging over 17k nodes and 39k edges per graph, across a hierarchy of 47 types and 696 families. Compared to the popular REDDIT-12K database, MalNet offers 105x more graphs, 44x larger graphs on average, and 63x the classes. We provide a detailed analysis of MalNet, discussing its properties and provenance. The unprecedented scale and diversity of MalNet offers exciting opportunities to advance the frontiers of graph representation learning---enabling new discoveries and research into imbalanced classification, explainability and the impact of class hardness. The database is publically available at www.mal-net.org.
Abstract:Interpreting how persuasive language influences audiences has implications across many domains like advertising, argumentation, and propaganda. Persuasion relies on more than a message's content. Arranging the order of the message itself (i.e., ordering specific rhetorical strategies) also plays an important role. To examine how strategy orderings contribute to persuasiveness, we first utilize a Variational Autoencoder model to disentangle content and rhetorical strategies in textual requests from a large-scale loan request corpus. We then visualize interplay between content and strategy through an attentional LSTM that predicts the success of textual requests. We find that specific (orderings of) strategies interact uniquely with a request's content to impact success rate, and thus the persuasiveness of a request.
Abstract:This paper systematically derives design dimensions for the structured evaluation of explainable artificial intelligence (XAI) approaches. These dimensions enable a descriptive characterization, facilitating comparisons between different study designs. They further structure the design space of XAI, converging towards a precise terminology required for a rigorous study of XAI. Our literature review differentiates between comparative studies and application papers, revealing methodological differences between the fields of machine learning, human-computer interaction, and visual analytics. Generally, each of these disciplines targets specific parts of the XAI process. Bridging the resulting gaps enables a holistic evaluation of XAI in real-world scenarios, as proposed by our conceptual model characterizing bias sources and trust-building. Furthermore, we identify and discuss the potential for future work based on observed research gaps that should lead to better coverage of the proposed model.
Abstract:Deep neural networks (DNNs) are now commonly used in many domains. However, they are vulnerable to adversarial attacks: carefully crafted perturbations on data inputs that can fool a model into making incorrect predictions. Despite significant research on developing DNN attack and defense techniques, people still lack an understanding of how such attacks penetrate a model's internals. We present Bluff, an interactive system for visualizing, characterizing, and deciphering adversarial attacks on vision-based neural networks. Bluff allows people to flexibly visualize and compare the activation pathways for benign and attacked images, revealing mechanisms that adversarial attacks employ to inflict harm on a model. Bluff is open-sourced and runs in modern web browsers.