Abstract:Prompts can switch a model's behavior even when the weights are fixed, yet this phenomenon is rarely treated as a clean theoretical object rather than a heuristic. We study the family of functions obtainable by holding a Transformer backbone fixed as an executor and varying only the prompt. Our core idea is to view the prompt as an externally injected program and to construct a simplified Transformer that interprets it to implement different computations. The construction exposes a mechanism-level decomposition: attention performs selective routing from prompt memory, the FFN performs local arithmetic conditioned on retrieved fragments, and depth-wise stacking composes these local updates into a multi-step computation. Under this viewpoint, we prove a constructive existential result showing that a single fixed backbone can approximate a broad class of target behaviors via prompts alone. The framework provides a unified starting point for formalizing trade-offs under prompt length/precision constraints and for studying structural limits of prompt-based switching, while remaining distinct from empirical claims about pretrained LLMs.
Abstract:We propose $φ$-test, a global feature-selection and significance procedure for black-box predictors that combines Shapley attributions with selective inference. Given a trained model and an evaluation dataset, $φ$-test performs SHAP-guided screening and fits a linear surrogate on the screened features via a selection rule with a tractable selective-inference form. For each retained feature, it outputs a Shapley-based global score, a surrogate coefficient, and post-selection $p$-values and confidence intervals in a global feature-importance table. Experiments on real tabular regression tasks with tree-based and neural backbones suggest that $φ$-test can retain much of the predictive ability of the original model while using only a few features and producing feature sets that remain fairly stable across resamples and backbone classes. In these settings, $φ$-test acts as a practical global explanation layer linking Shapley-based importance summaries with classical statistical inference.
Abstract:We propose Anti-regularization (AR), which adds a sign-reversed reward term to the loss to intentionally increase model expressivity in the small-sample regime, and then attenuates this intervention with a power-law decay as the sample size grows. We formalize spectral safety and trust-region conditions, and design a lightweight stability safeguard that combines a projection operator with gradient clipping, ensuring stable intervention under stated assumptions. Our analysis spans linear smoothers and the Neural Tangent Kernel (NTK) regime, providing practical guidance on selecting the decay exponent by balancing empirical risk against variance. Empirically, AR reduces underfitting while preserving generalization and improving calibration in both regression and classification. Ablation studies confirm that the decay schedule and the stability safeguard are critical to preventing overfitting and numerical instability. We further examine a degrees-of-freedom targeting schedule that keeps per-sample complexity approximately constant. AR is simple to implement and reproducible, integrating cleanly into standard empirical risk minimization pipelines. It enables robust learning in data- and resource-constrained settings by intervening only when beneficial and fading away when unnecessary.