The increase in the availability of online videos has transformed the way we access information and knowledge. A growing number of individuals now prefer instructional videos as they offer a series of step-by-step procedures to accomplish particular tasks. The instructional videos from the medical domain may provide the best possible visual answers to first aid, medical emergency, and medical education questions. Toward this, this paper is focused on answering health-related questions asked by the public by providing visual answers from medical videos. The scarcity of large-scale datasets in the medical domain is a key challenge that hinders the development of applications that can help the public with their health-related questions. To address this issue, we first proposed a pipelined approach to create two large-scale datasets: HealthVidQA-CRF and HealthVidQA-Prompt. Later, we proposed monomodal and multimodal approaches that can effectively provide visual answers from medical videos to natural language questions. We conducted a comprehensive analysis of the results, focusing on the impact of the created datasets on model training and the significance of visual features in enhancing the performance of the monomodal and multi-modal approaches. Our findings suggest that these datasets have the potential to enhance the performance of medical visual answer localization tasks and provide a promising future direction to further enhance the performance by using pre-trained language-vision models.
Lifelong learning, also referred to as continual learning, is the problem of training an AI agent continuously while also preventing it from forgetting its previously acquired knowledge. Most of the existing methods primarily focus on lifelong learning within a static environment and lack the ability to mitigate forgetting in a quickly-changing dynamic environment. Streaming lifelong learning is a challenging setting of lifelong learning with the goal of continuous learning in a dynamic non-stationary environment without forgetting. We introduce a novel approach to lifelong learning, which is streaming, requires a single pass over the data, can learn in a class-incremental manner, and can be evaluated on-the-fly (anytime inference). To accomplish these, we propose virtual gradients for continual representation learning to prevent catastrophic forgetting and leverage an exponential-moving-average-based semantic memory to further enhance performance. Extensive experiments on diverse datasets demonstrate our method's efficacy and superior performance over existing methods.
We present Generalized LoRA (GLoRA), an advanced approach for universal parameter-efficient fine-tuning tasks. Enhancing Low-Rank Adaptation (LoRA), GLoRA employs a generalized prompt module to optimize pre-trained model weights and adjust intermediate activations, providing more flexibility and capability across diverse tasks and datasets. Moreover, GLoRA facilitates efficient parameter adaptation by employing a scalable, modular, layer-wise structure search that learns individual adapter of each layer. Originating from a unified mathematical formulation, GLoRA exhibits strong transfer learning, few-shot learning and domain generalization abilities, as it adjusts to new tasks through additional dimensions on weights and activations. Comprehensive experiments demonstrate that GLoRA outperforms all previous methods in natural, specialized, and structured benchmarks, achieving superior accuracy with fewer parameters and computations on various datasets. Furthermore, our structural re-parameterization design ensures that GLoRA incurs no extra inference cost, rendering it a practical solution for resource-limited applications. Code is available at: https://github.com/Arnav0400/ViT-Slim/tree/master/GLoRA.
E-commerce websites (e.g. Amazon) have a plethora of structured and unstructured information (text and images) present on the product pages. Sellers often either don't label or mislabel values of the attributes (e.g. color, size etc.) for their products. Automatically identifying these attribute values from an eCommerce product page that contains both text and images is a challenging task, especially when the attribute value is not explicitly mentioned in the catalog. In this paper, we present a scalable solution for this problem where we pose attribute extraction problem as a question-answering task, which we solve using \textbf{MXT}, consisting of three key components: (i) \textbf{M}AG (Multimodal Adaptation Gate), (ii) \textbf{X}ception network, and (iii) \textbf{T}5 encoder-decoder. Our system consists of a generative model that \emph{generates} attribute-values for a given product by using both textual and visual characteristics (e.g. images) of the product. We show that our system is capable of handling zero-shot attribute prediction (when attribute value is not seen in training data) and value-absent prediction (when attribute value is not mentioned in the text) which are missing in traditional classification-based and NER-based models respectively. We have trained our models using distant supervision, removing dependency on human labeling, thus making them practical for real-world applications. With this framework, we are able to train a single model for 1000s of (product-type, attribute) pairs, thus reducing the overhead of training and maintaining separate models. Extensive experiments on two real world datasets show that our framework improves the absolute recall@90P by 10.16\% and 6.9\% from the existing state of the art models. In a popular e-commerce store, we have deployed our models for 1000s of (product-type, attribute) pairs.
Pre-trained language models (PLMs) have proven to be effective for document re-ranking task. However, they lack the ability to fully interpret the semantics of biomedical and health-care queries and often rely on simplistic patterns for retrieving documents. To address this challenge, we propose an approach that integrates knowledge and the PLMs to guide the model toward effectively capturing information from external sources and retrieving the correct documents. We performed comprehensive experiments on two biomedical and open-domain datasets that show that our approach significantly improves vanilla PLMs and other existing approaches for document re-ranking task.
Many real-world applications based on online learning produce streaming data that is haphazard in nature, i.e., contains missing features, features becoming obsolete in time, the appearance of new features at later points in time and a lack of clarity on the total number of input features. These challenges make it hard to build a learnable system for such applications, and almost no work exists in deep learning that addresses this issue. In this paper, we present Aux-Drop, an auxiliary dropout regularization strategy for online learning that handles the haphazard input features in an effective manner. Aux-Drop adapts the conventional dropout regularization scheme for the haphazard input feature space ensuring that the final output is minimally impacted by the chaotic appearance of such features. It helps to prevent the co-adaptation of especially the auxiliary and base features, as well as reduces the strong dependence of the output on any of the auxiliary inputs of the model. This helps in better learning for scenarios where certain features disappear in time or when new features are to be modeled. The efficacy of Aux-Drop has been demonstrated through extensive numerical experiments on SOTA benchmarking datasets that include Italy Power Demand, HIGGS, SUSY and multiple UCI datasets.
Text classification helps analyse texts for semantic meaning and relevance, by mapping the words against this hierarchy. An analysis of various types of texts is invaluable to understanding both their semantic meaning, as well as their relevance. Text classification is a method of categorising documents. It combines computer text classification and natural language processing to analyse text in aggregate. This method provides a descriptive categorization of the text, with features like content type, object field, lexical characteristics, and style traits. In this research, the authors aim to use natural language feature extraction methods in machine learning which are then used to train some of the basic machine learning models like Naive Bayes, Logistic Regression, and Support Vector Machine. These models are used to detect when a teacher must get involved in a discussion when the lines go off-topic.
With the continuous increase of internet usage in todays time, everyone is influenced by this source of the power of technology. Due to this, the rise of applications and games Is unstoppable. A major percentage of our population uses these applications for multiple purposes. These range from education, communication, news, entertainment, and many more. Out of this, the application that is making sure that the world stays in touch with each other and with current affairs is social media. Social media applications have seen a boom in the last 10 years with the introduction of smartphones and the internet being available at affordable prices. Applications like Twitch and Youtube are some of the best platforms for producing content and expressing their talent as well. It is the goal of every content creator to post the best and most reliable content so that they can gain recognition. It is important to know the methods of achieving popularity easily, which is what this paper proposes to bring to the spotlight. There should be certain parameters based on which the reach of content could be multiplied by a good factor. The proposed research work aims to identify and estimate the reach, popularity, and views of a YouTube video by using certain features using machine learning and AI techniques. A ranking system would also be used keeping the trending videos in consideration. This would eventually help the content creator know how authentic their content is and healthy competition to make better content before uploading the video on the platform will be ensured.
Question-answering (QA) that comes naturally to humans is a critical component in seamless human-computer interaction. It has emerged as one of the most convenient and natural methods to interact with the web and is especially desirable in voice-controlled environments. Despite being one of the oldest research areas, the current QA system faces the critical challenge of handling multilingual queries. To build an Artificial Intelligent (AI) agent that can serve multilingual end users, a QA system is required to be language versatile and tailored to suit the multilingual environment. Recent advances in QA models have enabled surpassing human performance primarily due to the availability of a sizable amount of high-quality datasets. However, the majority of such annotated datasets are expensive to create and are only confined to the English language, making it challenging to acknowledge progress in foreign languages. Therefore, to measure a similar improvement in the multilingual QA system, it is necessary to invest in high-quality multilingual evaluation benchmarks. In this dissertation, we focus on advancing QA techniques for handling end-user queries in multilingual environments. This dissertation consists of two parts. In the first part, we explore multilingualism and a new dimension of multilingualism referred to as code-mixing. Second, we propose a technique to solve the task of multi-hop question generation by exploiting multiple documents. Experiments show our models achieve state-of-the-art performance on answer extraction, ranking, and generation tasks on multiple domains of MQA, VQA, and language generation. The proposed techniques are generic and can be widely used in various domains and languages to advance QA systems.
Nearest neighbor search (NNS) aims to locate the points in high-dimensional space that is closest to the query point. The brute-force approach for finding the nearest neighbor becomes computationally infeasible when the number of points is large. The NNS has multiple applications in medicine, such as searching large medical imaging databases, disease classification, diagnosis, etc. With a focus on medical imaging, this paper proposes DenseLinkSearch an effective and efficient algorithm that searches and retrieves the relevant images from heterogeneous sources of medical images. Towards this, given a medical database, the proposed algorithm builds the index that consists of pre-computed links of each point in the database. The search algorithm utilizes the index to efficiently traverse the database in search of the nearest neighbor. We extensively tested the proposed NNS approach and compared the performance with state-of-the-art NNS approaches on benchmark datasets and our created medical image datasets. The proposed approach outperformed the existing approach in terms of retrieving accurate neighbors and retrieval speed. We also explore the role of medical image feature representation in content-based medical image retrieval tasks. We propose a Transformer-based feature representation technique that outperformed the existing pre-trained Transformer approach on CLEF 2011 medical image retrieval task. The source code of our experiments are available at https://github.com/deepaknlp/DLS.