Abstract:Integrated sensing and communication will be a key feature of future mobile networks, enabling highly efficient systems and numerous new applications by leveraging communication signals for sensing. In this paper, we analyze the impact of arbitrary modulation alphabets on the sensing performance of communication-centric OFDM systems as expected in the next-generation 6G networks. We evaluate existing interference mitigation techniques, such as coherent successive target cancellation, and propose an enhanced version of this algorithm. A systematic performance evaluation in multi-target scenarios, including the effects of scattering, demonstrates that our proposed interference mitigation methods achieve performance comparable to sensing-optimal constant modulus signals while utilizing higher order constellations for more efficient communications.
Abstract:Integrated sensing and communications (ISAC) promises new use cases for mobile communication systems by reusing the communication signal for radar-like sensing. However, sensing and communications (S&C) impose conflicting requirements on the modulation format, resulting in a tradeoff between their corresponding performance. This paper investigates constellation shaping as a means to simultaneously improve S&C performance in orthogonal frequency division multiplexing (OFDM)-based ISAC systems. We begin by deriving how the transmit symbols affect detection performance and derive theoretical lower and upper bounds on the maximum achievable information rate under a given sensing constraint. Using an autoencoder-based optimization, we investigate geometric, probabilistic, and joint constellation shaping, where joint shaping combines both approaches, employing both optimal maximum a-posteriori decoding and practical bit-metric decoding. Our results show that constellation shaping enables a flexible trade-off between S&C, can approach the derived upper bound, and significantly outperforms conventional modulation formats. Motivated by its practical implementation feasibility, we review probabilistic amplitude shaping (PAS) and propose a generalization tailored to ISAC. For this generalization, we propose a low-complexity log-likelihood ratio computation with negligible rate loss. We demonstrate that combining conventional and generalized PAS enables a flexible and low-complexity tradeoff between S&C, closely approaching the performance of joint constellation shaping.
Abstract:We address the problem of uncertainty propagation in the discrete Fourier transform by modeling the fast Fourier transform as a factor graph. Building on this representation, we propose an efficient framework for approximate Bayesian inference using belief propagation (BP) and expectation propagation, extending its applicability beyond Gaussian assumptions. By leveraging an appropriate BP message representation and a suitable schedule, our method achieves stable convergence with accurate mean and variance estimates. Numerical experiments in representative scenarios from communications demonstrate the practical potential of the proposed framework for uncertainty-aware inference in probabilistic systems operating across both time and frequency domain.
Abstract:Integrated sensing and communications (ISAC) is expected to play a major role in numerous future applications, e.g., smart cities. Leveraging native radar signals like the frequency modulated continuous wave (FMCW) waveform additionally for data transmission offers a highly efficient use of valuable physical radio frequency (RF) resources allocated for automotive radar applications. In this paper, we propose the adoption of higher-order modulation formats for data modulation onto an FMCW waveform and provide a comprehensive overview of the entire signal processing chain. We evaluate the impact of each component on the overall sensing performance. While alignment algorithms are essential for removing the information signal at the sensing receiver, they also introduce significant dispersion to the received signal. We analyze this effect in detail. Notably, we demonstrate that the impact of non-constant amplitude modulation on sensing performance is statistically negligible when the complete signal processing chain is considered. This finding highlights the potential for achieving high data rates in FMCW-ISAC systems without compromising the sensing capabilities.
Abstract:We show that equalization-enhanced phase noise manifests as a time-varying, frequency-dependent phase error, which can be modeled and reversed by a time-varying all-pass finite impulse response filter.
Abstract:6G communications systems are expected to integrate radar-like sensing capabilities enabling novel use cases. However, integrated sensing and communications (ISAC) introduces a trade-off between communications and sensing performance because the optimal constellations for each task differ. In this paper, we compare geometric, probabilistic and joint constellation shaping for orthogonal frequency division multiplexing (OFDM)-ISAC systems using an autoencoder (AE) framework. We first derive the constellation-dependent detection probability and propose a novel loss function to include the sensing performance in the AE framework. Our simulation results demonstrate that constellation shaping enables a dynamic trade-off between communications and sensing. Depending on whether sensing or communications performance is prioritized, geometric or probabilistic constellation shaping is preferred. Joint constellation shaping combines the advantages of geometric and probabilistic shaping, significantly outperforming legacy modulation formats.
Abstract:6G communication systems promise to deliver sensing capabilities by utilizing the orthogonal frequency division multiplexing (OFDM) communication signal for sensing. However, the cyclic prefix inherent in OFDM systems limits the sensing range, necessitating compensation techniques to detect small, distant targets like drones. In this paper, we show that state-of-the-art coherent compensation methods fail in scenarios involving multiple targets, resulting in an increased noise floor in the radar image. Our contributions include a novel multi target coherent compensation algorithm and a generalized signal-to-interference-and-noise ratio for multiple targets to evaluate the performance. Our algorithm achieves the same detection performance at long distances requiring only 3.6% of the radio resources compared to classical OFDM radar processing. This enables resource efficient sensing at long distances in multi target scenarios with legacy communications-only networks.
Abstract:Spiking neural networks (SNNs) emulated on dedicated neuromorphic accelerators promise to offer energy-efficient signal processing. However, the neuromorphic advantage over traditional algorithms still remains to be demonstrated in real-world applications. Here, we describe an intensity-modulation, direct-detection (IM/DD) task that is relevant to high-speed optical communication systems used in data centers. Compared to other machine learning-inspired benchmarks, the task offers several advantages. First, the dataset is inherently time-dependent, i.e., there is a time dimension that can be natively mapped to the dynamic evolution of SNNs. Second, small-scale SNNs can achieve the target accuracy required by technical communication standards. Third, due to the small scale and the defined target accuracy, the task facilitates the optimization for real-world aspects, such as energy efficiency, resource requirements, and system complexity.
Abstract:We investigate Kolmogorov-Arnold networks (KANs) for non-linear equalization of 112 Gb/s PAM4 passive optical networks (PONs). Using pruning and extensive hyperparameter search, we outperform linear equalizers and convolutional neural networks at low computational complexity.
Abstract:We investigate a monostatic orthogonal frequency-division multiplexing (OFDM)-based joint communication and sensing (JCAS) system with multiple antennas for object tracking. The native resolution of OFDM sensing, and radar sensing in general, is limited by the observation time and bandwidth. In this work, we improve the resolution through interpolation methods and tracking algorithms. We verify the resolution enhancement by comparing the root mean squared error (RMSE) of the estimated range, velocity and angle and by comparing the mean Euclidean distance between the estimated and true position. We demonstrate how both a Kalman filter for tracking, and interpolation methods using zero-padding and the chirp Z-transform (CZT) improve the estimation error. We discuss the computational complexity of the different methods. We propose the KalmanCZT approach that combines tracking via Kalman filtering and interpolation via the CZT, resulting in a solution with flexible resolution that significantly improves the range RMSE.