Abstract:While recent Multimodal Large Language Models exhibit impressive capabilities for general multimodal tasks, specialized domains like music necessitate tailored approaches. Music Audio-Visual Question Answering (Music AVQA) particularly underscores this, presenting unique challenges with its continuous, densely layered audio-visual content, intricate temporal dynamics, and the critical need for domain-specific knowledge. Through a systematic analysis of Music AVQA datasets and methods, this position paper identifies that specialized input processing, architectures incorporating dedicated spatial-temporal designs, and music-specific modeling strategies are critical for success in this domain. Our study provides valuable insights for researchers by highlighting effective design patterns empirically linked to strong performance, proposing concrete future directions for incorporating musical priors, and aiming to establish a robust foundation for advancing multimodal musical understanding. This work is intended to inspire broader attention and further research, supported by a continuously updated anonymous GitHub repository of relevant papers: https://github.com/xid32/Survey4MusicAVQA.
Abstract:LLM-as-Judge has emerged as a scalable alternative to human evaluation, enabling large language models (LLMs) to provide reward signals in trainings. While recent work has explored multi-agent extensions such as multi-agent debate and meta-judging to enhance evaluation quality, the question of how intrinsic biases manifest in these settings remains underexplored. In this study, we conduct a systematic analysis of four diverse bias types: position bias, verbosity bias, chain-of-thought bias, and bandwagon bias. We evaluate these biases across two widely adopted multi-agent LLM-as-Judge frameworks: Multi-Agent-Debate and LLM-as-Meta-Judge. Our results show that debate framework amplifies biases sharply after the initial debate, and this increased bias is sustained in subsequent rounds, while meta-judge approaches exhibit greater resistance. We further investigate the incorporation of PINE, a leading single-agent debiasing method, as a bias-free agent within these systems. The results reveal that this bias-free agent effectively reduces biases in debate settings but provides less benefit in meta-judge scenarios. Our work provides a comprehensive study of bias behavior in multi-agent LLM-as-Judge systems and highlights the need for targeted bias mitigation strategies in collaborative evaluation settings.
Abstract:We present knowledge continuity, a novel definition inspired by Lipschitz continuity which aims to certify the robustness of neural networks across input domains (such as continuous and discrete domains in vision and language, respectively). Most existing approaches that seek to certify robustness, especially Lipschitz continuity, lie within the continuous domain with norm and distribution-dependent guarantees. In contrast, our proposed definition yields certification guarantees that depend only on the loss function and the intermediate learned metric spaces of the neural network. These bounds are independent of domain modality, norms, and distribution. We further demonstrate that the expressiveness of a model class is not at odds with its knowledge continuity. This implies that achieving robustness by maximizing knowledge continuity should not theoretically hinder inferential performance. Finally, to complement our theoretical results, we present several applications of knowledge continuity such as regularization, a certification algorithm, and show that knowledge continuity can be used to localize vulnerable components of a neural network.
Abstract:We present ProtoConcepts, a method for interpretable image classification combining deep learning and case-based reasoning using prototypical parts. Existing work in prototype-based image classification uses a ``this looks like that'' reasoning process, which dissects a test image by finding prototypical parts and combining evidence from these prototypes to make a final classification. However, all of the existing prototypical part-based image classifiers provide only one-to-one comparisons, where a single training image patch serves as a prototype to compare with a part of our test image. With these single-image comparisons, it can often be difficult to identify the underlying concept being compared (e.g., ``is it comparing the color or the shape?''). Our proposed method modifies the architecture of prototype-based networks to instead learn prototypical concepts which are visualized using multiple image patches. Having multiple visualizations of the same prototype allows us to more easily identify the concept captured by that prototype (e.g., ``the test image and the related training patches are all the same shade of blue''), and allows our model to create richer, more interpretable visual explanations. Our experiments show that our ``this looks like those'' reasoning process can be applied as a modification to a wide range of existing prototypical image classification networks while achieving comparable accuracy on benchmark datasets.