Abstract:Programmatic weak supervision (PWS) significantly reduces human effort for labeling data by combining the outputs of user-provided labeling functions (LFs) on unlabeled datapoints. However, the quality of the generated labels depends directly on the accuracy of the LFs. In this work, we study the problem of fixing LFs based on a small set of labeled examples. Towards this goal, we develop novel techniques for repairing a set of LFs by minimally changing their results on the labeled examples such that the fixed LFs ensure that (i) there is sufficient evidence for the correct label of each labeled datapoint and (ii) the accuracy of each repaired LF is sufficiently high. We model LFs as conditional rules which enables us to refine them, i.e., to selectively change their output for some inputs. We demonstrate experimentally that our system improves the quality of LFs based on surprisingly small sets of labeled datapoints.
Abstract:Detecting semantic types of columns in data lake tables is an important application. A key bottleneck in semantic type detection is the availability of human annotation due to the inherent complexity of data lakes. In this paper, we propose using programmatic weak supervision to assist in annotating the training data for semantic type detection by leveraging labeling functions. One challenge in this process is the difficulty of manually writing labeling functions due to the large volume and low quality of the data lake table datasets. To address this issue, we explore employing Large Language Models (LLMs) for labeling function generation and introduce several prompt engineering strategies for this purpose. We conduct experiments on real-world web table datasets. Based on the initial results, we perform extensive analysis and provide empirical insights and future directions for researchers in this field.