Abstract:Large language models (LLMs) equipped with retrieval--the Retrieval-Augmented Generation (RAG) paradigm--should combine their parametric knowledge with external evidence, yet in practice they often hallucinate, over-trust noisy snippets, or ignore vital context. We introduce TCR (Transparent Conflict Resolution), a plug-and-play framework that makes this decision process observable and controllable. TCR (i) disentangles semantic match and factual consistency via dual contrastive encoders, (ii) estimates self-answerability to gauge confidence in internal memory, and (iii) feeds the three scalar signals to the generator through a lightweight soft-prompt with SNR-based weighting. Across seven benchmarks TCR improves conflict detection (+5-18 F1), raises knowledge-gap recovery by +21.4 pp and cuts misleading-context overrides by -29.3 pp, while adding only 0.3% parameters. The signals align with human judgements and expose temporal decision patterns.
Abstract:Large-scale Chinese spelling correction (CSC) remains critical for real-world text processing, yet existing LLMs and supervised methods lack robustness to novel errors and rely on costly annotations. We introduce CEC-Zero, a zero-supervision reinforcement learning framework that addresses this by enabling LLMs to correct their own mistakes. CEC-Zero synthesizes errorful inputs from clean text, computes cluster-consensus rewards via semantic similarity and candidate agreement, and optimizes the policy with PPO. It outperforms supervised baselines by 10--13 F$_1$ points and strong LLM fine-tunes by 5--8 points across 9 benchmarks, with theoretical guarantees of unbiased rewards and convergence. CEC-Zero establishes a label-free paradigm for robust, scalable CSC, unlocking LLM potential in noisy text pipelines.
Abstract:How should we quantify the value of each training example when datasets are large, heterogeneous, and geometrically structured? Classical Data-Shapley answers in principle, but its O(n!) complexity and point-wise perspective are ill-suited to modern scales. We propose Hierarchical Contrastive Data Valuation (HCDV), a three-stage framework that (i) learns a contrastive, geometry-preserving representation, (ii) organizes the data into a balanced coarse-to-fine hierarchy of clusters, and (iii) assigns Shapley-style payoffs to coalitions via local Monte-Carlo games whose budgets are propagated downward. HCDV collapses the factorial burden to O(T sum_{l} K_{l}) = O(T K_max log n), rewards examples that sharpen decision boundaries, and regularizes outliers through curvature-based smoothness. We prove that HCDV approximately satisfies the four Shapley axioms with surplus loss O(eta log n), enjoys sub-Gaussian coalition deviation tilde O(1/sqrt{T}), and incurs at most k epsilon_infty regret for top-k selection. Experiments on four benchmarks--tabular, vision, streaming, and a 45M-sample CTR task--plus the OpenDataVal suite show that HCDV lifts accuracy by up to +5 pp, slashes valuation time by up to 100x, and directly supports tasks such as augmentation filtering, low-latency streaming updates, and fair marketplace payouts.




Abstract:The Branch-and-bound (B&B) algorithm is the main solver for Mixed Integer Linear Programs (MILPs), where the selection of branching variable is essential to computational efficiency. However, traditional heuristics for branching often fail to generalize across heterogeneous problem instances, while existing learning-based methods such as imitation learning (IL) suffers from dependence on expert demonstration quality, and reinforcement learning (RL) struggles with limitations in sparse rewards and dynamic state representation challenges. To address these issues, we propose ReviBranch, a novel deep RL framework that constructs revived trajectories by reviving explicit historical correspondences between branching decisions and their corresponding graph states along search-tree paths. During training, ReviBranch enables agents to learn from complete structural evolution and temporal dependencies within the branching process. Additionally, we introduce an importance-weighted reward redistribution mechanism that transforms sparse terminal rewards into dense stepwise feedback, addressing the sparse reward challenge. Extensive experiments on different MILP benchmarks demonstrate that ReviBranch outperforms state-of-the-art RL methods, reducing B&B nodes by 4.0% and LP iterations by 2.2% on large-scale instances. The results highlight the robustness and generalizability of ReviBranch across heterogeneous MILP problem classes.
Abstract:Data selection is essential for training deep learning models. An effective data sampler assigns proper sampling probability for training data and helps the model converge to a good local minimum with high performance. Previous studies in data sampling are mainly based on heuristic rules or learning through a huge amount of time-consuming trials. In this paper, we propose an automatic \textbf{swift sampler} search algorithm, \textbf{SS}, to explore automatically learning effective samplers efficiently. In particular, \textbf{SS} utilizes a novel formulation to map a sampler to a low dimension of hyper-parameters and uses an approximated local minimum to quickly examine the quality of a sampler. Benefiting from its low computational expense, \textbf{SS} can be applied on large-scale data sets with high efficiency. Comprehensive experiments on various tasks demonstrate that \textbf{SS} powered sampling can achieve obvious improvements (e.g., 1.5\% on ImageNet) and transfer among different neural networks. Project page: https://github.com/Alexander-Yao/Swift-Sampler.