Abstract:Text-guided image editing has advanced rapidly with the rise of diffusion models. While flow-based inversion-free methods offer high efficiency by avoiding latent inversion, they often fail to effectively integrate source information, leading to poor background preservation, spatial inconsistencies, and over-editing due to the lack of effective integration of source information. In this paper, we present FIA-Edit, a novel inversion-free framework that achieves high-fidelity and semantically precise edits through a Frequency-Interactive Attention. Specifically, we design two key components: (1) a Frequency Representation Interaction (FRI) module that enhances cross-domain alignment by exchanging frequency components between source and target features within self-attention, and (2) a Feature Injection (FIJ) module that explicitly incorporates source-side queries, keys, values, and text embeddings into the target branch's cross-attention to preserve structure and semantics. Comprehensive and extensive experiments demonstrate that FIA-Edit supports high-fidelity editing at low computational cost (~6s per 512 * 512 image on an RTX 4090) and consistently outperforms existing methods across diverse tasks in visual quality, background fidelity, and controllability. Furthermore, we are the first to extend text-guided image editing to clinical applications. By synthesizing anatomically coherent hemorrhage variations in surgical images, FIA-Edit opens new opportunities for medical data augmentation and delivers significant gains in downstream bleeding classification. Our project is available at: https://github.com/kk42yy/FIA-Edit.
Abstract:We consider a class of stochastic programming problems where the implicitly decision-dependent random variable follows a nonparametric regression model with heteroscedastic error. The Clarke subdifferential and surrogate functions are not readily obtainable due to the latent decision dependency. To deal with such a computational difficulty, we develop an adaptive learning-based surrogate method that integrates the simulation scheme and statistical estimates to construct estimation-based surrogate functions in a way that the simulation process is adaptively guided by the algorithmic procedure. We establish the non-asymptotic convergence rate analysis in terms of $(\nu, \delta)$-near stationarity in expectation under variable proximal parameters and batch sizes, which exhibits the superior convergence performance and enhanced stability in both theory and practice. We provide numerical results with both synthetic and real data which illustrate the benefits of the proposed algorithm in terms of algorithmic stability and efficiency.