Tony
Abstract:This work provides a simple approach to discover tight object bounding boxes with only image-level supervision, called Tight box mining with Surrounding Segmentation Context (TS2C). We observe that object candidates mined through current multiple instance learning methods are usually trapped to discriminative object parts, rather than the entire object. TS2C leverages surrounding segmentation context derived from weakly-supervised segmentation to suppress such low-quality distracting candidates and boost the high-quality ones. Specifically, TS2C is developed based on two key properties of desirable bounding boxes: 1) high purity, meaning most pixels in the box are with high object response, and 2) high completeness, meaning the box covers high object response pixels comprehensively. With such novel and computable criteria, more tight candidates can be discovered for learning a better object detector. With TS2C, we obtain 48.0% and 44.4% mAP scores on VOC 2007 and 2012 benchmarks, which are the new state-of-the-arts.
Abstract:Visual recognition under adverse conditions is a very important and challenging problem of high practical value, due to the ubiquitous existence of quality distortions during image acquisition, transmission, or storage. While deep neural networks have been extensively exploited in the techniques of low-quality image restoration and high-quality image recognition tasks respectively, few studies have been done on the important problem of recognition from very low-quality images. This paper proposes a deep learning based framework for improving the performance of image and video recognition models under adverse conditions, using robust adverse pre-training or its aggressive variant. The robust adverse pre-training algorithms leverage the power of pre-training and generalizes conventional unsupervised pre-training and data augmentation methods. We further develop a transfer learning approach to cope with real-world datasets of unknown adverse conditions. The proposed framework is comprehensively evaluated on a number of image and video recognition benchmarks, and obtains significant performance improvements under various single or mixed adverse conditions. Our visualization and analysis further add to the explainability of results.
Abstract:Emotion recognition from facial expressions is tremendously useful, especially when coupled with smart devices and wireless multimedia applications. However, the inadequate network bandwidth often limits the spatial resolution of the transmitted video, which will heavily degrade the recognition reliability. We develop a novel framework to achieve robust emotion recognition from low bit rate video. While video frames are downsampled at the encoder side, the decoder is embedded with a deep network model for joint super-resolution (SR) and recognition. Notably, we propose a novel max-mix training strategy, leading to a single "One-for-All" model that is remarkably robust to a vast range of downsampling factors. That makes our framework well adapted for the varied bandwidths in real transmission scenarios, without hampering scalability or efficiency. The proposed framework is evaluated on the AVEC 2016 benchmark, and demonstrates significantly improved stand-alone recognition performance, as well as rate-distortion (R-D) performance, than either directly recognizing from LR frames, or separating SR and recognition.