Abstract:The auditing of financial documents, historically a labor-intensive process, stands on the precipice of transformation. AI-driven solutions have made inroads into streamlining this process by recommending pertinent text passages from financial reports to align with the legal requirements of accounting standards. However, a glaring limitation remains: these systems commonly fall short in verifying if the recommended excerpts indeed comply with the specific legal mandates. Hence, in this paper, we probe the efficiency of publicly available Large Language Models (LLMs) in the realm of regulatory compliance across different model configurations. We place particular emphasis on comparing cutting-edge open-source LLMs, such as Llama-2, with their proprietary counterparts like OpenAI's GPT models. This comparative analysis leverages two custom datasets provided by our partner PricewaterhouseCoopers (PwC) Germany. We find that the open-source Llama-2 70 billion model demonstrates outstanding performance in detecting non-compliance or true negative occurrences, beating all their proprietary counterparts. Nevertheless, proprietary models such as GPT-4 perform the best in a broad variety of scenarios, particularly in non-English contexts.
Abstract:During the pre-training step of natural language models, the main objective is to learn a general representation of the pre-training dataset, usually requiring large amounts of textual data to capture the complexity and diversity of natural language. Contrasting this, in most cases, the size of the data available to solve the specific downstream task is often dwarfed by the aforementioned pre-training dataset, especially in domains where data is scarce. We introduce controlled randomness, i.e. noise, into the training process to improve fine-tuning language models and explore the performance of targeted noise in addition to the parameters of these models. We find that adding such noise can improve the performance in our two downstream tasks of joint named entity recognition and relation extraction and text summarization.
Abstract:Auditing financial documents is a very tedious and time-consuming process. As of today, it can already be simplified by employing AI-based solutions to recommend relevant text passages from a report for each legal requirement of rigorous accounting standards. However, these methods need to be fine-tuned regularly, and they require abundant annotated data, which is often lacking in industrial environments. Hence, we present ZeroShotALI, a novel recommender system that leverages a state-of-the-art large language model (LLM) in conjunction with a domain-specifically optimized transformer-based text-matching solution. We find that a two-step approach of first retrieving a number of best matching document sections per legal requirement with a custom BERT-based model and second filtering these selections using an LLM yields significant performance improvements over existing approaches.
Abstract:We present sustainAI, an intelligent, context-aware recommender system that assists auditors and financial investors as well as the general public to efficiently analyze companies' sustainability reports. The tool leverages an end-to-end trainable architecture that couples a BERT-based encoding module with a multi-label classification head to match relevant text passages from sustainability reports to their respective law regulations from the Global Reporting Initiative (GRI) standards. We evaluate our model on two novel German sustainability reporting data sets and consistently achieve a significantly higher recommendation performance compared to multiple strong baselines. Furthermore, sustainAI is publicly available for everyone at https://sustain.ki.nrw/.