Abstract:Conversational Agents (CAs) powered with deep language models (DLMs) have shown tremendous promise in the domain of mental health. Prominently, the CAs have been used to provide informational or therapeutic services to patients. However, the utility of CAs to assist in mental health triaging has not been explored in the existing work as it requires a controlled generation of follow-up questions (FQs), which are often initiated and guided by the mental health professionals (MHPs) in clinical settings. In the context of depression, our experiments show that DLMs coupled with process knowledge in a mental health questionnaire generate 12.54% and 9.37% better FQs based on similarity and longest common subsequence matches to questions in the PHQ-9 dataset respectively, when compared with DLMs without process knowledge support. Despite coupling with process knowledge, we find that DLMs are still prone to hallucination, i.e., generating redundant, irrelevant, and unsafe FQs. We demonstrate the challenge of using existing datasets to train a DLM for generating FQs that adhere to clinical process knowledge. To address this limitation, we prepared an extended PHQ-9 based dataset, PRIMATE, in collaboration with MHPs. PRIMATE contains annotations regarding whether a particular question in the PHQ-9 dataset has already been answered in the user's initial description of the mental health condition. We used PRIMATE to train a DLM in a supervised setting to identify which of the PHQ-9 questions can be answered directly from the user's post and which ones would require more information from the user. Using performance analysis based on MCC scores, we show that PRIMATE is appropriate for identifying questions in PHQ-9 that could guide generative DLMs towards controlled FQ generation suitable for aiding triaging. Dataset created as a part of this research: https://github.com/primate-mh/Primate2022
Abstract:Improving the performance and natural language explanations of deep learning algorithms is a priority for adoption by humans in the real world. In several domains, such as healthcare, such technology has significant potential to reduce the burden on humans by providing quality assistance at scale. However, current methods rely on the traditional pipeline of predicting labels from data, thus completely ignoring the process and guidelines used to obtain the labels. Furthermore, post hoc explanations on the data to label prediction using explainable AI (XAI) models, while satisfactory to computer scientists, leave much to be desired to the end-users due to lacking explanations of the process in terms of human-understandable concepts. We \textit{introduce}, \textit{formalize}, and \textit{develop} a novel Artificial Intelligence (A) paradigm -- Process Knowledge-infused Learning (PK-iL). PK-iL utilizes a structured process knowledge that explicitly explains the underlying prediction process that makes sense to end-users. The qualitative human evaluation confirms through a annotator agreement of 0.72, that humans are understand explanations for the predictions. PK-iL also performs competitively with the state-of-the-art (SOTA) baselines.
Abstract:Knowledge-based entity prediction (KEP) is a novel task that aims to improve machine perception in autonomous systems. KEP leverages relational knowledge from heterogeneous sources in predicting potentially unrecognized entities. In this paper, we provide a formal definition of KEP as a knowledge completion task. Three potential solutions are then introduced, which employ several machine learning and data mining techniques. Finally, the applicability of KEP is demonstrated on two autonomous systems from different domains; namely, autonomous driving and smart manufacturing. We argue that in complex real-world systems, the use of KEP would significantly improve machine perception while pushing the current technology one step closer to achieving the full autonomy.
Abstract:Analyzing gender is critical to study mental health (MH) support in CVD (cardiovascular disease). The existing studies on using social media for extracting MH symptoms consider symptom detection and tend to ignore user context, disease, or gender. The current study aims to design and evaluate a system to capture how MH symptoms associated with CVD are expressed differently with the gender on social media. We observe that the reliable detection of MH symptoms expressed by persons with heart disease in user posts is challenging because of the co-existence of (dis)similar MH symptoms in one post and due to variation in the description of symptoms based on gender. We collect a corpus of $150k$ items (posts and comments) annotated using the subreddit labels and transfer learning approaches. We propose GeM, a novel task-adaptive multi-task learning approach to identify the MH symptoms in CVD patients based on gender. Specifically, we adapt a knowledge-assisted RoBERTa based bi-encoder model to capture CVD-related MH symptoms. Moreover, it enhances the reliability for differentiating the gender language in MH symptoms when compared to the state-of-art language models. Our model achieves high (statistically significant) performance and predicts four labels of MH issues and two gender labels, which outperforms RoBERTa, improving the recall by 2.14% on the symptom identification task and by 2.55% on the gender identification task.
Abstract:Humans use causality and hypothetical retrospection in their daily decision-making, planning, and understanding of life events. The human mind, while retrospecting a given situation, think about questions such as "What was the cause of the given situation?", "What would be the effect of my action?", or "Which action led to this effect?". It develops a causal model of the world, which learns with fewer data points, makes inferences, and contemplates counterfactual scenarios. The unseen, unknown, scenarios are known as counterfactuals. AI algorithms use a representation based on knowledge graphs (KG) to represent the concepts of time, space, and facts. A KG is a graphical data model which captures the semantic relationships between entities such as events, objects, or concepts. The existing KGs represent causal relationships extracted from texts based on linguistic patterns of noun phrases for causes and effects as in ConceptNet and WordNet. The current causality representation in KGs makes it challenging to support counterfactual reasoning. A richer representation of causality in AI systems using a KG-based approach is needed for better explainability, and support for intervention and counterfactuals reasoning, leading to improved understanding of AI systems by humans. The causality representation requires a higher representation framework to define the context, the causal information, and the causal effects. The proposed Causal Knowledge Graph (CausalKG) framework, leverages recent progress of causality and KG towards explainability. CausalKG intends to address the lack of a domain adaptable causal model and represent the complex causal relations using the hyper-relational graph representation in the KG. We show that the CausalKG's interventional and counterfactual reasoning can be used by the AI system for the domain explainability.
Abstract:Mathematical reasoning would be one of the next frontiers for artificial intelligence to make significant progress. The ongoing surge to solve math word problems (MWPs) and hence achieve better mathematical reasoning ability would continue to be a key line of research in the coming time. We inspect non-neural and neural methods to solve math word problems narrated in a natural language. We also highlight the ability of these methods to be generalizable, mathematically reasonable, interpretable, and explainable. Neural approaches dominate the current state of the art, and we survey them highlighting three strategies to MWP solving: (1) direct answer generation, (2) expression tree generation for inferring answers, and (3) template retrieval for answer computation. Moreover, we discuss technological approaches, review the evolution of intuitive design choices to solve MWPs, and examine them for mathematical reasoning ability. We finally identify several gaps that warrant the need for external knowledge and knowledge-infused learning, among several other opportunities in solving MWPs.
Abstract:The current UMLS (Unified Medical Language System) Metathesaurus construction process for integrating over 200 biomedical source vocabularies is expensive and error-prone as it relies on the lexical algorithms and human editors for deciding if the two biomedical terms are synonymous. Recent advances in Natural Language Processing such as Transformer models like BERT and its biomedical variants with contextualized word embeddings have achieved state-of-the-art (SOTA) performance on downstream tasks. We aim to validate if these approaches using the BERT models can actually outperform the existing approaches for predicting synonymy in the UMLS Metathesaurus. In the existing Siamese Networks with LSTM and BioWordVec embeddings, we replace the BioWordVec embeddings with the biomedical BERT embeddings extracted from each BERT model using different ways of extraction. In the Transformer architecture, we evaluate the use of the different biomedical BERT models that have been pre-trained using different datasets and tasks. Given the SOTA performance of these BERT models for other downstream tasks, our experiments yield surprisingly interesting results: (1) in both model architectures, the approaches employing these biomedical BERT-based models do not outperform the existing approaches using Siamese Network with BioWordVec embeddings for the UMLS synonymy prediction task, (2) the original BioBERT large model that has not been pre-trained with the UMLS outperforms the SapBERT models that have been pre-trained with the UMLS, and (3) using the Siamese Networks yields better performance for synonymy prediction when compared to using the biomedical BERT models.
Abstract:AI systems have seen significant adoption in various domains. At the same time, further adoption in some domains is hindered by inability to fully trust an AI system that it will not harm a human. Besides the concerns for fairness, privacy, transparency, and explainability are key to developing trusts in AI systems. As stated in describing trustworthy AI "Trust comes through understanding. How AI-led decisions are made and what determining factors were included are crucial to understand." The subarea of explaining AI systems has come to be known as XAI. Multiple aspects of an AI system can be explained; these include biases that the data might have, lack of data points in a particular region of the example space, fairness of gathering the data, feature importances, etc. However, besides these, it is critical to have human-centered explanations that are directly related to decision-making similar to how a domain expert makes decisions based on "domain knowledge," that also include well-established, peer-validated explicit guidelines. To understand and validate an AI system's outcomes (such as classification, recommendations, predictions), that lead to developing trust in the AI system, it is necessary to involve explicit domain knowledge that humans understand and use.
Abstract:Contextual Bandits find important use cases in various real-life scenarios such as online advertising, recommendation systems, healthcare, etc. However, most of the algorithms use flat feature vectors to represent context whereas, in the real world, there is a varying number of objects and relations among them to model in the context. For example, in a music recommendation system, the user context contains what music they listen to, which artists create this music, the artist albums, etc. Adding richer relational context representations also introduces a much larger context space making exploration-exploitation harder. To improve the efficiency of exploration-exploitation knowledge about the context can be infused to guide the exploration-exploitation strategy. Relational context representations allow a natural way for humans to specify knowledge owing to their descriptive nature. We propose an adaptation of Knowledge Infused Policy Gradients to the Contextual Bandit setting and a novel Knowledge Infused Policy Gradients Upper Confidence Bound algorithm and perform an experimental analysis of a simulated music recommendation dataset and various real-life datasets where expert knowledge can drastically reduce the total regret and where it cannot.
Abstract:During the ongoing COVID-19 crisis, subreddits on Reddit, such as r/Coronavirus saw a rapid growth in user's requests for help (support seekers - SSs) including individuals with varying professions and experiences with diverse perspectives on care (support providers - SPs). Currently, knowledgeable human moderators match an SS with a user with relevant experience, i.e, an SP on these subreddits. This unscalable process defers timely care. We present a medical knowledge-infused approach to efficient matching of SS and SPs validated by experts for the users affected by anxiety and depression, in the context of with COVID-19. After matching, each SP to an SS labeled as either supportive, informative, or similar (sharing experiences) using the principles of natural language inference. Evaluation by 21 domain experts indicates the efficacy of incorporated knowledge and shows the efficacy the matching system.