Alert button
Picture for Ali Salehi

Ali Salehi

Alert button

UniMorph 4.0: Universal Morphology

May 10, 2022
Khuyagbaatar Batsuren, Omer Goldman, Salam Khalifa, Nizar Habash, Witold Kieraś, Gábor Bella, Brian Leonard, Garrett Nicolai, Kyle Gorman, Yustinus Ghanggo Ate, Maria Ryskina, Sabrina J. Mielke, Elena Budianskaya, Charbel El-Khaissi, Tiago Pimentel, Michael Gasser, William Lane, Mohit Raj, Matt Coler, Jaime Rafael Montoya Samame, Delio Siticonatzi Camaiteri, Esaú Zumaeta Rojas, Didier López Francis, Arturo Oncevay, Juan López Bautista, Gema Celeste Silva Villegas, Lucas Torroba Hennigen, Adam Ek, David Guriel, Peter Dirix, Jean-Philippe Bernardy, Andrey Scherbakov, Aziyana Bayyr-ool, Antonios Anastasopoulos, Roberto Zariquiey, Karina Sheifer, Sofya Ganieva, Hilaria Cruz, Ritván Karahóǧa, Stella Markantonatou, George Pavlidis, Matvey Plugaryov, Elena Klyachko, Ali Salehi, Candy Angulo, Jatayu Baxi, Andrew Krizhanovsky, Natalia Krizhanovskaya, Elizabeth Salesky, Clara Vania, Sardana Ivanova, Jennifer White, Rowan Hall Maudslay, Josef Valvoda, Ran Zmigrod, Paula Czarnowska, Irene Nikkarinen, Aelita Salchak, Brijesh Bhatt, Christopher Straughn, Zoey Liu, Jonathan North Washington, Yuval Pinter, Duygu Ataman, Marcin Wolinski, Totok Suhardijanto, Anna Yablonskaya, Niklas Stoehr, Hossep Dolatian, Zahroh Nuriah, Shyam Ratan, Francis M. Tyers, Edoardo M. Ponti, Grant Aiton, Aryaman Arora, Richard J. Hatcher, Ritesh Kumar, Jeremiah Young, Daria Rodionova, Anastasia Yemelina, Taras Andrushko, Igor Marchenko, Polina Mashkovtseva, Alexandra Serova, Emily Prud'hommeaux, Maria Nepomniashchaya, Fausto Giunchiglia, Eleanor Chodroff, Mans Hulden, Miikka Silfverberg, Arya D. McCarthy, David Yarowsky, Ryan Cotterell, Reut Tsarfaty, Ekaterina Vylomova

Figure 1 for UniMorph 4.0: Universal Morphology
Figure 2 for UniMorph 4.0: Universal Morphology
Figure 3 for UniMorph 4.0: Universal Morphology
Figure 4 for UniMorph 4.0: Universal Morphology

The Universal Morphology (UniMorph) project is a collaborative effort providing broad-coverage instantiated normalized morphological inflection tables for hundreds of diverse world languages. The project comprises two major thrusts: a language-independent feature schema for rich morphological annotation and a type-level resource of annotated data in diverse languages realizing that schema. This paper presents the expansions and improvements made on several fronts over the last couple of years (since McCarthy et al. (2020)). Collaborative efforts by numerous linguists have added 67 new languages, including 30 endangered languages. We have implemented several improvements to the extraction pipeline to tackle some issues, e.g. missing gender and macron information. We have also amended the schema to use a hierarchical structure that is needed for morphological phenomena like multiple-argument agreement and case stacking, while adding some missing morphological features to make the schema more inclusive. In light of the last UniMorph release, we also augmented the database with morpheme segmentation for 16 languages. Lastly, this new release makes a push towards inclusion of derivational morphology in UniMorph by enriching the data and annotation schema with instances representing derivational processes from MorphyNet.

* LREC 2022; The first two authors made equal contributions 
Viaarxiv icon

DDCNet-Multires: Effective Receptive Field Guided Multiresolution CNN for Dense Prediction

Jul 12, 2021
Ali Salehi, Madhusudhanan Balasubramanian

Figure 1 for DDCNet-Multires: Effective Receptive Field Guided Multiresolution CNN for Dense Prediction
Figure 2 for DDCNet-Multires: Effective Receptive Field Guided Multiresolution CNN for Dense Prediction
Figure 3 for DDCNet-Multires: Effective Receptive Field Guided Multiresolution CNN for Dense Prediction
Figure 4 for DDCNet-Multires: Effective Receptive Field Guided Multiresolution CNN for Dense Prediction

Dense optical flow estimation is challenging when there are large displacements in a scene with heterogeneous motion dynamics, occlusion, and scene homogeneity. Traditional approaches to handle these challenges include hierarchical and multiresolution processing methods. Learning-based optical flow methods typically use a multiresolution approach with image warping when a broad range of flow velocities and heterogeneous motion is present. Accuracy of such coarse-to-fine methods is affected by the ghosting artifacts when images are warped across multiple resolutions and by the vanishing problem in smaller scene extents with higher motion contrast. Previously, we devised strategies for building compact dense prediction networks guided by the effective receptive field (ERF) characteristics of the network (DDCNet). The DDCNet design was intentionally simple and compact allowing it to be used as a building block for designing more complex yet compact networks. In this work, we extend the DDCNet strategies to handle heterogeneous motion dynamics by cascading DDCNet based sub-nets with decreasing extents of their ERF. Our DDCNet with multiresolution capability (DDCNet-Multires) is compact without any specialized network layers. We evaluate the performance of the DDCNet-Multires network using standard optical flow benchmark datasets. Our experiments demonstrate that DDCNet-Multires improves over the DDCNet-B0 and -B1 and provides optical flow estimates with accuracy comparable to similar lightweight learning-based methods.

* 27 pages, 10 figures, 2 tables. arXiv admin note: text overlap with arXiv:2107.04715 
Viaarxiv icon

DDCNet: Deep Dilated Convolutional Neural Network for Dense Prediction

Jul 09, 2021
Ali Salehi, Madhusudhanan Balasubramanian

Figure 1 for DDCNet: Deep Dilated Convolutional Neural Network for Dense Prediction
Figure 2 for DDCNet: Deep Dilated Convolutional Neural Network for Dense Prediction
Figure 3 for DDCNet: Deep Dilated Convolutional Neural Network for Dense Prediction
Figure 4 for DDCNet: Deep Dilated Convolutional Neural Network for Dense Prediction

Dense pixel matching problems such as optical flow and disparity estimation are among the most challenging tasks in computer vision. Recently, several deep learning methods designed for these problems have been successful. A sufficiently larger effective receptive field (ERF) and a higher resolution of spatial features within a network are essential for providing higher-resolution dense estimates. In this work, we present a systemic approach to design network architectures that can provide a larger receptive field while maintaining a higher spatial feature resolution. To achieve a larger ERF, we utilized dilated convolutional layers. By aggressively increasing dilation rates in the deeper layers, we were able to achieve a sufficiently larger ERF with a significantly fewer number of trainable parameters. We used optical flow estimation problem as the primary benchmark to illustrate our network design strategy. The benchmark results (Sintel, KITTI, and Middlebury) indicate that our compact networks can achieve comparable performance in the class of lightweight networks.

* 32 pages, 13 figures, 3 tables 
Viaarxiv icon