Abstract:We present JetFormer, a versatile and scalable encoder-only Transformer architecture for particle jet tagging at the Large Hadron Collider (LHC). Unlike prior approaches that are often tailored to specific deployment regimes, JetFormer is designed to operate effectively across the full spectrum of jet tagging scenarios, from high-accuracy offline analysis to ultra-low-latency online triggering. The model processes variable-length sets of particle features without relying on input of explicit pairwise interactions, yet achieves competitive or superior performance compared to state-of-the-art methods. On the large-scale JetClass dataset, a large-scale JetFormer matches the accuracy of the interaction-rich ParT model (within 0.7%) while using 37.4% fewer FLOPs, demonstrating its computational efficiency and strong generalization. On benchmark HLS4ML 150P datasets, JetFormer consistently outperforms existing models such as MLPs, Deep Sets, and Interaction Networks by 3-4% in accuracy. To bridge the gap to hardware deployment, we further introduce a hardware-aware optimization pipeline based on multi-objective hyperparameter search, yielding compact variants like JetFormer-tiny suitable for FPGA-based trigger systems with sub-microsecond latency requirements. Through structured pruning and quantization, we show that JetFormer can be aggressively compressed with minimal accuracy loss. By unifying high-performance modeling and deployability within a single architectural framework, JetFormer provides a practical pathway for deploying Transformer-based jet taggers in both offline and online environments at the LHC. Code is available at https://github.com/walkieq/JetFormer.




Abstract:We study various machine learning based algorithms for performing accurate jet flavor classification on field-programmable gate arrays and demonstrate how latency and resource consumption scale with the input size and choice of algorithm. These architectures provide an initial design for models that could be used for tagging at the CERN LHC during its high-luminosity phase. The high-luminosity upgrade will lead to a five-fold increase in its instantaneous luminosity for proton-proton collisions and, in turn, higher data volume and complexity, such as the availability of jet constituents. Through quantization-aware training and efficient hardware implementations, we show that O(100) ns inference of complex architectures such as deep sets and interaction networks is feasible at a low computational resource cost.