Abstract:Retrieval-Augmented Generation (RAG) has become a popular technique for enhancing the reliability and utility of Large Language Models (LLMs) by grounding responses in external documents. Traditional RAG systems rely on Optical Character Recognition (OCR) to first process scanned documents into text. However, even state-of-the-art OCRs can introduce errors, especially in degraded or complex documents. Recent vision-language approaches, such as ColPali, propose direct visual embedding of documents, eliminating the need for OCR. This study presents a systematic comparison between a vision-based RAG system (ColPali) and more traditional OCR-based pipelines utilizing Llama 3.2 (90B) and Nougat OCR across varying document qualities. Beyond conventional retrieval accuracy metrics, we introduce a semantic answer evaluation benchmark to assess end-to-end question-answering performance. Our findings indicate that while vision-based RAG performs well on documents it has been fine-tuned on, OCR-based RAG is better able to generalize to unseen documents of varying quality. We highlight the key trade-offs between computational efficiency and semantic accuracy, offering practical guidance for RAG practitioners in selecting between OCR-dependent and vision-based document retrieval systems in production environments.
Abstract:Supervisory Control and Data Acquisition (SCADA) systems often serve as the nervous system for substations within power grids. These systems facilitate real-time monitoring, data acquisition, control of equipment, and ensure smooth and efficient operation of the substation and its connected devices. Previous work has shown that dimensionality reduction-based approaches, such as Principal Component Analysis (PCA), can be used for accurate identification of anomalies in SCADA systems. While not specifically applied to SCADA, non-negative matrix factorization (NMF) has shown strong results at detecting anomalies in wireless sensor networks. These unsupervised approaches model the normal or expected behavior and detect the unseen types of attacks or anomalies by identifying the events that deviate from the expected behavior. These approaches; however, do not model the complex and multi-dimensional interactions that are naturally present in SCADA systems. Differently, non-negative tensor decomposition is a powerful unsupervised machine learning (ML) method that can model the complex and multi-faceted activity details of SCADA events. In this work, we novelly apply the tensor decomposition method Canonical Polyadic Alternating Poisson Regression (CP-APR) with a probabilistic framework, which has previously shown state-of-the-art anomaly detection results on cyber network data, to identify anomalies in SCADA systems. We showcase that the use of statistical behavior analysis of SCADA communication with tensor decomposition improves the specificity and accuracy of identifying anomalies in electrical grid systems. In our experiments, we model real-world SCADA system data collected from the electrical grid operated by Los Alamos National Laboratory (LANL) which provides transmission and distribution service through a partnership with Los Alamos County, and detect synthetically generated anomalies.